
Mälardalen University Licentiate Thesis
No.85

Operational Semantics for
PLEX

A Basis for Safe Parallelization

Johan Lindhult

May 2008

School of Innovation, Design and Engineering
Mälardalen University

Västerås, Sweden

Copyright c© Johan Lindhult, 2008
ISSN 1651-9256
ISBN 978-91-85485-80-2
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press

Abstract

The emerge of multi-core computers implies a major challenge for existing
software. Due to simpler cores, the applications will face decreased perfor-
mance if not executed in parallel. The problem is that much of the software is
sequential.

Central parts of the AXE telephone exchange system from Ericsson is pro-
grammed in the language PLEX. The current software is executed on a single-
processor architecture, and assumes non-preemptive execution.

This thesis presents two versions of an operational semantics for PLEX;
one that models execution on the current, single-processor, architecture, and
one that models parallel execution on an assumed shared-memory architecture.
A formal semantics of the language is a necessity for ensuring correctness of
program analysis, and program transformations.

We also report on a case study of the potential memory conflicts that may
arise when the existing code is allowed to be executed in parallel. We show that
simple static methods are sufficient to resolve many of the potential conflicts,
thereby reducing the amount of manual work that probably still needs to be
performed in order to adapt the code for parallel processing.

i

To Cina, Therése, and Simon

Acknowledgements

First of all, my deepest thanks goes to my supervisors Björn Lisper and Jan
Gustafsson at Mälardalen University, as well as Janet Wennersten and Ole
Kjöller at Ericsson.

This work has been supported by Ericsson AB, and Vinnova through the
ASTEC competence center. Additional funding has been provided by ARTES,
and SAVE-IT. Thank you all.

I would also like to take the opportunity to thank the following past and
present colleagues; everybody at the Computer Science Lab at Mälardalen
University, Markus Bohlin at SICS, everybody (including Patrik Thunström
and Aminur Rahman Faisal) at FTE/DDM at Ericsson. Also Mats and Lars
Winberg at Ericsson. An extra thanks to my former room-mate at Mälardalen
university, Jan Carlson, with whom I have had a lot of discussions during my
research (not to mention all the help I have got with LATEX!).

No research is possible without a great administration. Thank you Harriet,
Monika, and Else-Maj.

A special thanks to Peter Funk, Janet Wennersten (again), and Bosse Lin-
dell.

A very warm thanks to the following friends; Waldemar Kocjan, Lars Bruce,
”DIF-Håkan” Persson, and Torbjörn Johansson.

Last, but certainly not least, I had never gone this far without the love and
support from my wife Cina, and my children Therése and Simon. Also my par-
ents (P-O and Kjerstin) as well as my brothers (Micke and Lasse) ”deserves” a
thanks.

Johan Lindhult
Sala, April, 2008

v

Contents

1 Introduction 1
1.1 Research Questions . 3
1.2 Approach . 4
1.3 Related Publications . 5
1.4 Contributions . 6
1.5 Thesis Outline . 7

2 AXE and PLEX 9
2.1 The AXE Telephone Exchange System 9
2.2 PLEX: Programming Language for EXchanges 10
2.3 Shared Data . 12
2.4 Signals . 14
2.5 Application Modules, and the Resource Module Platform . . . 16

3 Execution Paradigms 19
3.1 FD: Functional Distribution 20
3.2 CMX: Concurrent Multi-eXecutor 20
3.3 CMX-FD . 22

4 Operational Semantics for Core PLEX 25
4.1 Programming Language Semantics 25

4.1.1 Semantic Approaches 26
4.2 Core PLEX . 27
4.3 A Sequential Semantics . 31

4.3.1 The Basic Statements 33
4.3.2 The Signal Statements 35
4.3.3 The EXIT Statement 38

vii

viii Contents

4.3.4 Additional transitions 38
4.3.5 Translating Selection, and Iterations Statements into

Core PLEX . 39
4.4 A Parallel Semantics . 41

4.4.1 The Basic Statements 44
4.4.2 The Signal Statements 45
4.4.3 The EXIT Statement 52
4.4.4 Additional transitions 53
4.4.5 Global Transitions 54

5 Case Study: Examining Potential Memory Conflicts 55
5.1 Analysis of Conflicts . 55
5.2 Examining the Code . 57

6 Related Work 67
6.1 Semantics . 67
6.2 Concurrency Control . 68

7 Conclusions 71
7.1 Future Work . 72

Bibliography 75

A The Sequential Semantics for Core PLEX 80

B The Parallel Semantics for Core PLEX 83

C The Potential Memory Conflicts 88

Chapter 1

Introduction

Over the years, software in general has been benefiting from ever increasing
clock speeds on new CPU’s, but with the emerge of multi-core architectures
this might have come to an end. When the individual cores becomes simpler,
with lower clock speeds, in order to reduce power consumption, the software
might (in the worst case) end up running slower on these new architectures. To
fully utilize the capacity of such an architecture, different parts of the applica-
tion need to be executed in parallel. The problem with much of todays software
is that is sequential, i.e., the designer has assumed sequential execution.

Sequential software could (of course) be executed on a parallel architecture
if the execution is sequential (as in Fig. 1.1 (a)), but that is a poor utilization of
the possibilities of the architecture.

A general, and desirable, solution is automatic parallelization. Here, the
programmer writes his/her program in a conventional, sequential language, and
leaves all the ”dirty work” to an optimizing compiler that transforms the se-
quential program into a parallel one. The ”traditional” area of application for
an optimizing compiler has been scientific applications, where an increasing
processor capacity has an major impact on the performance since much of the
work in these applications can be done in parallel. These applications are often
written in languages like FORTRAN or C. Typical cases where parallelization
has been applied is loops and accesses of arrays. A loop may have sub-parts,
without any dependency among them, which could be executed in parallel. In
the case of array access, it might be the case that different parts of a program
(or different threads) access different parts of the array. The literature contains
several surveys on automatic parallelization of sequential languages [1, 2, 3, 4].

1

2 Chapter 1. Introduction

COMMON
DATA AREA

COMMON
DATA AREA

(b)(a)

T1

T2

T1

T2

Time

Figure 1.1: Independent tasks with some common data; sequentially executed
(a), or executed in parallel (b), where the different tasks may access the same
data concurrently.

1.1 Research Questions 3

Nevertheless, since new machines will increasingly be parallel [5, 6], soft-
ware developers, and maintainers, still need to deal with concurrency one way
or another in situations where the code can’t be parallelized the ”traditional”
way.

For a large class of computer systems, the software has also been designed
under the (implicit) assumption that activities in the system are executed on a
non-preemptive basis. Examples of such systems are small embedded systems
that are quite static to their nature, or priority-based systems where activities
on the highest priority are assumed to be non-interruptible. Non-preemptive
execution gives exclusive access to shared data, which guarantees that the con-
sistency of such data is maintained.

However, on a parallel architecture, non-preemptive execution does not
protect the shared data any longer since activities executed on different pro-
cessors may access and update the same data concurrently, as in Fig. 1.1 (b).
On the other hand, the very idea of parallel architectures is to increase per-
formance by parallel execution. The question is: how utilize the power of a
parallel processor for a system designed for non-preemptive execution?

Our subject of study is the language PLEX, used to program the AXE tele-
phone exchange system from Ericsson. The AXE system, and the PLEX lan-
guage, developed in conjunction, have roots that go back to the late 1970’s. The
language is event-based in the sense that only events, encoded as signals, can
trigger code execution. Signals trigger independent activities (denoted jobs),
which may access shared data stored in different shared data areas. PLEX jobs
are executed in a priority-based, non-interruptible (at the same priority level),
fashion on a single-processor architecture, and the language lacks constructs
for synchronization. Due to the atomic nature of PLEX jobs (further discussed
in Chapter 2.4), they can be seen as a kind of transactions. Thus, when exe-
cuting them in parallel, one will face problems that are similar to maintaining
the ACID1 properties when multiple transactions, in a parallel database, are
allowed to execute concurrently.

1.1 Research Questions
The primary motivation for our research is the fact that multi-core architectures
will become a de-facto standard in a near future, while at the same time, there

1Atomicity = To the outside world, the transaction happens indivisibly, Consistency = The
transaction does not violate system invariants, Isolation = Concurrent transactions do not interfere
with each other, and Durability = Once a transaction commits, the changes are permanent [7].

4 Chapter 1. Introduction

are millions of lines of legacy event-based code in industry2 . Rewriting this
code into explicitly parallel code would be extremely expensive. Thus, there
is a need to investigate methods to safely migrate such code to parallel archi-
tectures to get a maximum of efficiency gain and with a minimum of manual
rewriting. By safe, we mean that the semantics of the PLEX jobs is preserved.
Our general research question can then be formulated as:

Q: Can different PLEX jobs execute in parallel, without changing the seman-
tics of the system?

which gives rise to the following, more detailed, questions

Q1: How can we decide whether two PLEX jobs can be executed in parallel
with preserved semantics?

Q2: Are there safe methods (e.g., program transformation) to increase the
number of PLEX jobs that can be executed in parallel?

1.2 Approach
To answer our first question, Q1, we believe that the specification of a program
analysis that can classify parallel execution as safe (or unsafe) is a suitable way
to go. Since we have defined safety as ”preserving the semantics”, the question
is under what conditions the semantics is preserved? Since two PLEX jobs can
only affect each other through shared data, a sufficient condition is if the shared
data is kept consistent.

A case study of the potential memory conflicts that may arise can be used
to estimate the possibility for parallel execution, since it reveals whether two
PLEX jobs may be in conflict with each other through the access of the same
data. We also think that such a case-study will give us ideas on the characteris-
tics of the analysis that need to be specified, as well as the code transformations
that need to be performed, i.e., it will give us the possible answers to Q2.

Due to the very high availability demands that exists for telephone ex-
change systems (which implies that system failures are costly), it is important
that the analysis as well as the proposed transformations are safe. Therefore,
the analysis and the transformations must be based on a formal semantics for

2In our case, there are approximately 20 Mlines of PLEX code in the AXE system.

1.3 Related Publications 5

PLEX.

This thesis will provide the necessary formal basis for the analysis and the
transformations by specifying an operational semantics for PLEX. It will also
report on a case-study of potential memory conflicts in some existing PLEX
code.

Throughout this thesis, we will assume a conventional shared-memory ar-
chitecture equipped with a run-time system that executes PLEX as it is (with-
out any modification). The shared data is automatically protected through a
locking scheme. The execution on this architecture is modeled in Chapter 4.4.
Locking blocks will guarantee consistency of data, since data in a block can
never be accessed by a PLEX job executing outside that block. However, it
may be overly conservative, since two parallel PLEX jobs accessing the same
block may well never touch the same data. This thesis aims at allowing a more
loose locking scheme, where a block need not be locked if we know for sure
that the PLEX jobs executing in it cannot have any memory conflicts.

1.3 Related Publications

The formal semantics for PLEX, as well as the study of potential shared-
memory conflicts in the existing PLEX code, have been presented in the fol-
lowing publications:

• J. Lindhult, A Structural Operational Semantics for PLEX. MRTC report
ISSN 1404-3041 ISRN MDH-MRTC-166/2004-1-SE, December 2003.

• J. Lindhult and B. Lisper, A Formal Semantics for PLEX. In Proceedings
of the 2nd APPSEM II Workshop (APPSEM’04), Tallinn, Estonia, April
2004.

Our first version of the operational semantics for sequential execution of
PLEX was presented in the above technical report, and summarized in
an Extended Abstract presented at APPSEM-04.

• J. Lindhult and B. Lisper, Two Formal Semantics for PLEX. In Proceed-
ings of the 3rd APPSEM II Workshop (APPSEM’05), Frauenchiemsee,
Germany, September 2005.

6 Chapter 1. Introduction

• J. Lindhult, An Operational Semantics for the Execution of PLEX in
a Shared Memory Architecture. MRTC report ISSN 1404-3041 ISRN
MDH-MRTC-227/2008-1-SE, April 2008.

The first version of a semantics for PLEX in the shared-memory archi-
tecture was presented at APPSEM-05, and later refined in a following
technical report.

• J. Lindhult and B. Lisper, Sequential PLEX, and its Potential for Par-
allel Execution. In Proceedings of the 13th International Workshop on
Compilers for Parallel Computers (CPC 2007), Lisbon, Portugal, July
2007.

• J. Lindhult, Existing PLEX Code, and its Suitability for Parallel Execu-
tion - A Case Study. MRTC report ISSN 1404-3041 ISRN MDH-MRTC-
228/2008-1-SE, April 2008.

The initial results of our study of potential shared-memory conflicts in
the existing PLEX code was presented at CPC 2007. The study was then
completed in a technical report.

1.4 Contributions
The main contributions of this thesis are:

• By using a labeled program (following the style in [8]) we show a straight-
forward operational semantics for an imperative, non-toy like, language
which includes the GOTO statement, and an asynchronous communica-
tion paradigm.

• We also show why a formal semantics is not only of theoretical interest,
by taking operational semantics technology to industry, and points to an
application of formal semantics that has considerable practical interest.

• In order to capture the differences between the possible sequential, and
the possible parallel, executions, we show how to model both a sequen-
tial run-time system, as well as a parallel one. This will also provide us
with the necessary theoretical ground for future criteria for safe parallel
execution.

• A study of existing PLEX-code, and possible propositions on how the
existing code, by a minimum of changes, could be transformed into suit-
able parallel code.

1.5 Thesis Outline 7

1.5 Thesis Outline
The thesis is structured in the following way: Chapter 2 contains an introduc-
tion to PLEX, and the AXE system. The parallel architecture, and different
run-time systems are found in Chapter 3. The semantics for PLEX is specified
in Chapter 4, whereas Chapter 5 covers examination of the potential memory
conflicts. We discuss related work in Chapter 6, before we conclude, and dis-
cuss future work, in Chapter 7.

Chapter 2

AXE and PLEX

We will start this chapter with a brief description of the AXE telephone ex-
change system, followed by an introduction to the language PLEX. For a more
thorough description, we refer to [9].

2.1 The AXE Telephone Exchange System
The AXE system, developed in its earliest version in the beginning of the
1970’s, is structured in a modular and hierarchical way. It consists of the two
main parts: APT and APZ, where the former is the telephony (or switching)
part, and the latter is the control part. The structure of the main parts of the
system is shown in Fig 2.1.

The part of the system that is in focus for parallel processing is the Central
Processor Sub-system, which architecture is shown in Fig. 2.2. In the current
architecture, the Central Processor Sub-system consists of a Central Processor
(CP) (which in turn consists of a single CPU and additional software), and a
number of Regional Processors (RP’s). Call requests are received by the RP’s,
and processed by the CP;

Regional Processor (RP): The main task of a regional processor is to relieve
the central processor by handling small routine jobs like scanning and
filtering.

Central Processor (CP): This is the central control unit of the system. All
complex and non-trivial decisions (such as call processing) are taken in
the central processor. This is the place for all forms of non-routine work.

9

10 Chapter 2. AXE and PLEX

System Level 1

System Level 2

SubsystemCPS

AXE

APZ APT

 APT - Telephony/Switching part
 APZ - Control part including central and regional processors

as well as operating system
 CPS - Central Processor Subsystem

.

Figure 2.1: The (original) hierarchical structure of the AXE system.

2.2 PLEX: Programming Language for EXchanges
Programming Language for EXchanges, PLEX, is a pseudo-parallel and event-
driven real-time language developed by Ericsson in conjunction with the first
AXE version in the 1970’s. The language is used to program the functionality
in the Central Processor Sub-system, and besides implementation of new func-
tionality, there is also a large amount of existing PLEX code to maintain. The
language has a signal paradigm as its top execution level, and it is event-based
in the sense that only events, encoded as signals, can trigger code execution.
A typical event is an incoming call request, see Fig. 2.2. Apart from an asyn-
chronous communication paradigm, PLEX is an imperative language, with as-
signments, conditionals, goto’s, and a restricted iteration construct (which only
iterates between given start and stop values). It lacks common statements from
other programming languages such as WHILE loops, negative numeric values
and real numbers.

A PLEX program file (called a block) consists of several, independent sub-
programs together with block-wise local data, see Fig. 2.3. As we will see
in Section 2.3, this data (variables) can be classified into different categories
depending on whether or not the value of a variable ’survives’ termination of
the software. Blocks can be thought of as objects, and the subprograms are
somewhat reminiscent of methods. However, there is no class system in PLEX,
and it is more appropriate to view a block as a kind of software component
whose interface is provided by the entry points to its sub-programs. Data within

2.2 PLEX: Programming Language for EXchanges 11

RP

RP

CPU

CP

AXE

Call request

Figure 2.2: Current (single-processor) architecture of the Central Processor
Sub-system.

blocks is strictly hidden, and there is no other way to access it than through the
sub-programs.

The sub-programs in a block can be executed in any order: execution of a
sub-program is triggered by a certain kind of event called signal arriving to the
block. Signals may be external: arriving from the outside or internal: arriving
from other sub-programs, possibly executing in other blocks. The execution
of one, or several, sub-programs constitutes a job; a job begins with a signal
receiving statement, and is terminated by the execution of an EXIT statement.
Due to the ’atomic’ execution of a job, i.e., once a job is started it will run to
completion, we may also view them as a kind of transactions.

With job-tree, we denote the set of jobs originating from the same external
signal. See also Fig. 2.4 (b), where the corresponding job-tree for the execution
in Fig. 2.4 (a) is shown.

Since sub-programs can be independently triggered, it is accurate to con-
sider jobs as “parallel”. However, the jobs are not executed truly in parallel:
rather, when spawned, they are buffered (queued), and non-preemptively exe-
cuted in FIFO order, see Figs. 2.6 (b) and 2.4 (a). Because of the sequential
FIFO order imposed, we term the language as “pseudo-parallel” since exter-
nally triggered jobs could be processed in any order (due to the order of the
external signals). We also note that different types of jobs are buffered, and
executed, on different levels of priority, and that jobs of the same priority are

12 Chapter 2. AXE and PLEX

 ENTRY POINT
PLEX Code

 EXIT POINT

Code

Code

Code

Code

COMMON
DATA AREA

PLEX program file (Block)

Sub-program

Figure 2.3: A PLEX program file (a block) consists of several sub-programs.

executed non-preemptively. User jobs (or call processing jobs), i.e., handling
of telephone calls, are always executed with high priority, whereas adminis-
trative jobs (e.g„ charging) always are executed with low priority (and never
when there are user jobs to execute).

2.3 Shared Data
Since the data in a block is shared between all its sub-programs, it might seem
as all variables may be potentially shared. However, as we indicated in Section
2.2, the variables belong to different categories: basically, the variables can be
divided into the following two main categories; data stored (DS) or temporary.

• The value of a temporary variable exists only in the internal processor
registers, and only while its corresponding software is being executed.
Variables are by default temporary, and thus cannot be shared between
different jobs.

• DS variables are persistent: they are loaded into a processor register from
the memory when needed, and then written back to the memory. These
variables can be further divided into1:

1. Files
1See also [10] where this distinction is discussed more thoroughly.

2.3 Shared Data 13

Timeblock 1 block 3block 2

enter

send

exit enter

send

send

exit enter

enter

exit

Signal 2

Signal 2
put in job buffer

Signal 3

Signal 4 exit

Signal 4
put in job buffer

Signal 3
put in job buffer

(a)

external
signal 1

(b)

external
signal 1

J1

J2

J3 J4

Figure 2.4: The ”pseudo-parallel” execution model of PLEX (a), and a corre-
sponding job-tree (b).

2. Common variables

Common variables are (mostly) “scalar” variables (but may as well be arrays),
whereas files essentially are arrays of records (similar to “structs” in C). Ele-
ments of records are called individual variables. Pointers address the relevant
record in a file. The records in a file are numbered, and the value of the pointer
is the number of the current record. Notable is that a pointer ”behaves” like a
temporary variable in that it will lose its value when the job that uses the pointer
terminates. Thus, common variables are used to store the ”current value” of a
pointer between the execution of different jobs.

PLEX C
record struct
file array of structs
pointer array index
individual variable struct member
common variable global variable

Table 2.1: Some PLEX concepts, and their ”counterparts” in C.

14 Chapter 2. AXE and PLEX

n

4
3

2
1

SUBNUMBER

NAME

STATE

0
POINTER

Figure 2.5: An example file with n records and a pointer with the current value
2.

Fig. 2.5 shows an example file with its records and a pointer, whereas Table
2.1 tries to relate the above PLEX concepts to its closest counterpart in C.

2.4 Signals
A key aspect, which distinguishes PLEX from an “ordinary” imperative lan-
guage, is the asynchronous communication paradigm: jobs communicate and
control other jobs through signals.

Every signal that is sent in the system is assigned a priority level, which is
of importance when the signal is to be buffered, and it tells the ”importance”
of the source code that is triggered to execution by the signal.

Signals are classified through combinations of different properties, where
the main distinction (from a semantical point of view) is between direct and
buffered signals, see Fig. 2.6. The difference is that a direct signal continues an
ongoing job, whereas a buffered signal spawns off a new job. A direct signal
is in this way similar to a jump (e.g. GOTO), and by using direct signals,
the programmer retains control over the execution. However, direct signals are
normally only allowed to be used in very time-critical program sequences, such
as call set-up routines. Buffered signals, on the other hand, are put in special
(FIFO-)queues (called job buffers) when they are sent from a job, and when
that job terminates, the operating system will fetch the first inserted buffered
signal and start a new job, see Fig. 2.6. This means that after the sending of the

2.4 Signals 15

buffered signal, the two, resulting ”execution paths” are independent of each
other, but there may still be a ”sequencing issue”, though, as the jobs have to
execute in the order imposed by the corresponding job-tree.

Execution

SEND
Signal-A

Execution
continues

EXIT

Block A

FIFO

Job Buffer

OS

ENTER
Signal-A

Execution

Block B

(1)

(2)
(3)

(4)Execution

SEND
Signal-A

Block A

ENTER
Signal-A

Execution
continues

Block B

(a) (b)

Figure 2.6: (a): a direct signal, ”similar” to a jump. (b): buffered signals: a
buffered signal is sent from Block A which is inserted at the end of the job
buffer (1). When the job in Block A terminates, the control is transferred to
the OS (2), which fetches a new signal from the buffer (3). This signal then
triggers the execution in Block B (4).

A second distinction is between single and combined signals. A combined
signal starts an activity which returns to the signal sending point when finished:
it could thus be seen as a method or subroutine call. A single signal does not
yield a return, and is thus (if direct) similar to a GOTO statement, see Fig. 2.7.
The combined signal is always direct, while the single signal may be buffered.

Unit A Unit B

A Single Signal

Unit A Unit B

Combined Signals

Figure 2.7: Single and combined signals.

Third, we also distinguish between external, and internal signals, where
the latter is issued from an ongoing job by a SEND statement. External signals,

16 Chapter 2. AXE and PLEX

on the other hand, are the signals that are sent from an RP to the CP (e.g., as a
result of a call request), see Fig. 2.2.

A final distinction can also be made between local and non-local signals,
where the former is a signal that is sent between sub-programs in the same
block, and the latter between sub-programs in different blocks.

2.5 Application Modules, and the Resource Mod-
ule Platform

The AXE Source System is a number of hardware and software resources
developed to perform specific functions according to the customer’s require-
ments. It can be thought of as a ”basket” containing all the functionality avail-
able in the AXE system. Over the years, new source systems has been devel-
oped by adding, updating or deleting functions in the original source system.
But in the 1980’s, the development of the AXE system for different markets
(US, UK, Sweden, Asia, etc.) has led to parallel development of the source
system since functionality could not easily be ported between different mar-
kets.

The solution to this increasing divergence was the Application Modularity
(AM) concept, which made fast adaption to customer requirements possible.
The AM concept specifically targeted the following requirements:

• the ability to freely combine applications in the system,

• quick implementation of requirements, and

• the reuse of existing equipment.

The basic idea is to gather related pieces of software into something called
Application Modules (AMs). Different telecom applications, such as ISDN,
PSTN (fixed telephony), and PLMN (Public Land Mobile Network), are then
constructed by combining the necessary AMs. The idea is described in Fig.
2.8, where it is also shown that different AMs can be used in more than one
application. The related pieces of software, mentioned above, are the PLEX
blocks (Section 2.2), which means that an AM is constructed by combining the
appropriate PLEX blocks, and the application by combining the appropriate
AMs.

The introduction of the AM concept ended the problem with parallel devel-
opment of different source systems. Instead, with AMs as building blocks, the

2.5 Application Modules, and the Resource Module Platform 17

AXE

APTAPZ

Separate
telecommucination
applications

Aplication Modules (AMs)
shared between different
applications

ISDN PSTN PLMN

AM AMAMAMAMAM

Figure 2.8: The AM concept incorporated into the AXE system.

required exchange was constructed by combining the necessary AMs into an
exchange with the required functionality (i.e., with the necessary applications).

An AM based system, consists of the AMs (which forms the applications)
together with some common resources. The common resources are collected
in the Resource Module Platform, or RMP for short. As can be seen in Fig.
2.9, communication between different AMs is performed via an AM proto-
col, whereas communication between an AM and the RMP is performed via
ordinary signals (as described in Section 2.4).

AM AM
AM Protocol

RMP

Ordinary
Signals

Ordinary
Signals

Figure 2.9: Illustration of An AM based system (from [11]).

Chapter 3

Execution Paradigms

As we said in Chapter 1.2, the parallel semantics in Chapter 4.4 models the
execution of PLEX on a conventional shared-memory architecture. The archi-
tecture is assumed to be equipped with a run-time system, which is designed
to execute PLEX programs as they are, i.e., unmodified. The run-time system,
CMX-FD, is covered in Section 3.3, and its forerunners, FD, and CMX, are
covered in Section 3.1 and Section 3.2, respectively. Common for these run-
time systems (or execution paradigms) are that all require a shared memory
architecture with support for Thread-Level Parallelism (TLP) as shown in Fig.
3.1. Examples of such architectures are Symmetric Multiprocessors (SMP),
Chip-Multiprocessors (CMP), and Simultaneous Multi-Threading processors
(SMT).

Common for the execution paradigms considered is that the old (sequen-
tial) software, without modifications, would be executed on the parallel archi-
tecture. The run-time systems are designed to preserve functional equivalence
with the original, sequential system. The approach taken to achieve this equiv-
alence is to (1) let jobs from the same job-tree execute in the same sequential
order as in the single-processor case, and (2) lock a block as soon as a job is
executing in it in order to protect its data from being concurrently accessed.

Although the use of a locking scheme introduces the risk of deadlocks, we
will not consider this further since the run-time systems are assumed to have a
mechanism to resolve this.

19

20 Chapter 3. Execution Paradigms

Shared Memory (SM)

Bus or Crossbar

CPU CPU CPU. . .

Figure 3.1: A conventional, shared memory, multi-processor, architecture.

3.1 FD: Functional Distribution

Functional Distribution, or FD for short, is an execution paradigm where the
load sharing among the threads are achieved by pre-allocating each block to
one of the threads, i.e., to distribute the functions. Each block only exists in
one instance, and once a block is allocated to a specific thread, it will always
be executed by that thread. The term FD-mode refer to execution according to
the FD principles (which is illustrated in Fig. 3.2).

In general, software that is to be executed in FD-mode may have to be
treated in certain ways to preserve functional correctness since there may be
situations when a specific (sequential) order, among parts of a program, is as-
sumed.

3.2 CMX: Concurrent Multi-eXecutor

In contrast to the FD-mode execution, where each block is pre-allocated to one
of the threads, no block is pre-allocated in CMX-mode. Instead, each block can
be executed by any of the threads (as illustrated in Fig. 3.3). This means that
since any of the threads can execute any block, it may very well be the case that
two threads access the same block concurrently. To prevent data interference
in such situations, locking is used, i.e., if a thread wants to execute a specific
block, it must first acquire the corresponding lock, which on the other hand,
may cause dead-locks if nothing is done to prevent it.

3.2 CMX: Concurrent Multi-eXecutor 21

Functional Distribution

CP

Block
A

Block
B

Block
C

CP

Block
D

Block
E

Block
F

Block
A

Block
B

Block
C

Block
D

Block
E

Block
F

Single CP

CP

Figure 3.2: Example (from [11]) on the FD principles: blocks, that in the
single-pro. case is executed on the same CP, is in FD distributed over the
available resources.

Block
A

Block
B

Block
C

Block
D

Block
E

Block
F

Memory

Thread Thread Thread Thread

Figure 3.3: The CMX paradigm, where any of the threads can execute any of
the blocks that resides in memory.

22 Chapter 3. Execution Paradigms

3.3 CMX-FD
The assumed execution model for parallel execution of PLEX, and the one
modeled in Chapter 4.4, is CMX-FD. As hinted by the name, CMX-FD is the
combination of the previous described execution paradigms CMX and FD. A
prerequisite for the approach is an AM based system, but before we discuss the
main ideas of the CMX-FD approach, we will make some additions to the AM
concept (and the AM based system) that we discussed in Chapter 2.5).

Now that we have discussed both Functional Distribution (FD), Section
3.1, and CMX, Section 3.2, we can add to the AM concept that an AM mainly
consists of FD-blocks, together with a minor number of CMX-blocks, where
the first type is allocated according to the FD principles, while the second type
can be executed by any thread (i.e., according to the CMX principles). The
same is true for the Resource Module Platform (RMP), i.e., that it consists of
both FD- and CMX-blocks. The reason behind the different types of blocks is
that some blocks (the CMX blocks) are reachable from different threads via a
direct-signal1 interface, which means that a signal to these blocks continues an
ongoing job, and since a job is not allowed to leave the thread that executes
it (Chapter 4.4.2), it must be possible for any thread to execute these blocks,
which implies the shared memory. It should be stated that the CMX-mode
would not be necessary if the blocks weren’t reachable from different threads
via direct signals, i.e., if all signals between different blocks were buffered.

The main idea behind the CMX-FD approach, illustrated in Fig. 3.4, is
simply based on execution of as many blocks as possible in FD-mode, whereas
the remaining blocks are executed in CMX-mode. Like in the FD-approach,
pre-allocation is used, but in CMX-FD it is the AMs, or more correct the FD-
parts of the AMs, that are pre-allocated: each AM (i.e., the FD-part) is allocated
to a thread according to a scheme given as initial configuration data (and, two
or more AMs can be allocated to the same thread). The FD-mode blocks will
always be executed by this thread, while we recall that CMX-mode blocks can
be executed by any thread. However, with Home thread for a specific CMX-
block, we denote the thread that its corresponding AM has been allocated to.
This information will be of importance in Chapter 4.4.2 when we specify the
parallel semantics for buffered signals.

1These direct signals are in almost every case combined signals. (The different kind of signals
was discussed in Chapter 2.4.)

3.3 CMX-FD 23

AM Protocol

CMX-mode

FD-mode

AM

Block
D

Block
E

Block
F

Ordinary
Signals

Ordinary
Signals

Block
G

Block
H

Block
I

Block
J

Block
K

Block
L

RMP

FD-mode

FD-mode

AM

Block
A

Block
B

Block
C

Figure 3.4: Illustration of the CMX-FD execution paradigm.

Chapter 4

Operational Semantics for
Core PLEX

Until recently, the semantics for PLEX has been defined through its implemen-
tation, but in the following sections we will present an operational semantics
for the current single-processor architecture, as well as for the multi-threaded
shared-memory architecture described in Chapter 3. The semantics, given in
terms of state transitions, will be specified for the language Core PLEX.

The chapter starts with an introduction to programming language seman-
tics, intended for the reader not familiar with the subject. Section 4.2 defines
our modeled language Core PLEX. The sequential, and the parallel semantics
for Core PLEX is presented in Section 4.3, and Section 4.4 respectively.

4.1 Programming Language Semantics

Programming language semantics is concerned with rigorously specifying the
meaning, or the effect, of programs that are to be executed. By effect we mean,
for instance, the contents of the memory locations, which parts of the program
that are to be executed, or the behavior of the hardware affected by the program.
A semantic specification captures these things in a formal way.

Formal descriptions using grammars of programming languages are be-
coming more and more popular, e.g. the BNF1 is used to specify the syntax

1Backus-Naur Form

25

26 Chapter 4. Operational Semantics for Core PLEX

of PLEX. The problem is that a formal description of the syntax says noth-
ing about the meaning of the program since ”syntax is concerned with the
grammatical structure of programs” whereas ”semantics is concerned with the
meaning of grammatically correct programs” [12] (both quotations). Or put
in other words, since a formal syntax only tells us which sequences of sym-
bols that forms a legal program, it is not enough if we need to reason about
the meaning of program execution. To be able to do that, we need the formal
semantics.

Typical uses for a semantic specification of a language is

• to reveal ambiguities and complexities in what may look as a clear doc-
umentation of the language (e.g. the language manual).

• to form the basis for implementation, analysis and verification.

4.1.1 Semantic Approaches

The meaning of a programming language can be formalized in different ways.
In the general case, the semantics will tell us something about the relation be-
tween an initial and a final state. Standard literature, for instance [12], normally
classifies a semantic approach as one of the following three categories:

• Operational semantics - How to execute the program. An operational
approach is not only concerned with the relationship between the initial
and the final state, it also reveals how the effect of the computations
is produced. The meaning is often specified by a transition system (or
sometimes as an abstract machine). The different operational approaches
differ in the level of details:

– In the Natural/Big steps semantics, the focus is on how the overall
results of the executions are obtained. The transition system spec-
ifies this relationship for every statement and is usually written in
the form 〈S, s〉 → s′ which, intuitively, means that the execution of
the statement S from state s will terminate and the resulting state
will be s′.

– As opposite to the big steps semantics, the Structural operational
/Small steps semantics, is also concerned with how the individual
steps of the execution takes place. If the execution of the statement
S in state s leads to the final state s′, the small steps semantics

4.2 Core PLEX 27

will tell us something about the intermediate states that are ”vis-
ited” during the execution. In other words, the focus is on the in-
dividual steps of the execution. The transition system has the form
〈S, s〉 ⇒ γ where γ is either of the form 〈S′, s′〉 or of the form s′.
This means that the transition system expresses the first step of the
execution of the statement S from the state s and the result of this
is γ.

• Denotational semantics - The effect of executing the program. Denota-
tional semantics, in contrast to operational semantics, is only concerned
with the effect of the computation, not how it is obtained. Meanings are
modeled by mathematical objects (usually functions) representing the ef-
fect of executing the constructs. The meaning of sequences of statements
are then modeled by function composition like f ◦ g

• Axiomatic2 semantics - Partial correctness properties of the program.
The axiomatic approach is concentrated on specific properties of a pro-
gram. These properties are expressed as assertions. Axiomatic seman-
tics involves rules for checking these assertions. There may be aspects of
the executions that are ignored since only specific properties are consid-
ered. Axiomatic definitions is often given in the form {P}S{Q} where
P is a Pre-condition, S the statement to be executed and Q a Post-
condition. This is to be interpreted as: ”If P holds and the execution
of S terminates, then Q will hold”.

4.2 Core PLEX
As we said in the beginning of this chapter, the semantics for PLEX will be
given in terms of a semantics for the language Core PLEX. Core PLEX is a
simplified version of PLEX intended to capture its essential properties, namely
the asynchronous communication, and the handling of jobs. Its basis is a simple
imperative language with assignments, conditionals, and unstructured GOTO’s.
The language also has a SEND statement to send direct or buffered signals, and
an EXIT statement to terminate the current job.

Notable omissions from the real PLEX language are the statements for sig-
nal reception (see below), and statements for iteration and selection (CASE).
Although simplified, it is actually possible to express many of the omitted

2The axiomatic approach is usually referred to as Hoare logic after the original paper [13]

28 Chapter 4. Operational Semantics for Core PLEX

n ∈ Num, numerals
x ∈ Var, program variables
l ∈ Lab, labels
a ∈ AExp, arithmetic expressions
b ∈ BExp, boolean expressions
S ∈ Stmt, statements
opa ∈ arithmetic operators
opr ∈ relational operators
a ::= x | n | a1 opa a2

b ::= a1 opr a2

data ::= {Var|Num}k⊥25−k, 1 ≤ k ≤ 25
S ::= [x := a]l | S1; S2 | [GOTO label]l | IF [b]l THEN S1 ELSE S2 |

[SEND signal]l | [SEND signal WITH data]l | [EXIT]l |
[SEND cfsig WAIT FOR cbsig IN label]llabel |
[SEND cfsig WITH data WAIT FOR cbsig IN label]llabel |
[RETURN cbsignal]l | [RETURN cbsignal WITH data]l |
[TRANSFER signal]l | [TRANSFER signal WITH data]l

Table 4.1: The abstract syntax for Core PLEX.

PLEX statements in terms of already specified Core PLEX statements (as we
will do in Section 4.3.5). We may therefore view the modeled language as the
”Core” of PLEX.

For modeling reasons, we have also introduced a statement not present in
real PLEX; the SKIP-statement with its standard semantics

s
SKIP−−−→ s

i.e., the execution of SKIP from an initial state s results in the same state s.
The abstract syntax for the modeled language is given in Table 4.1. Fol-

lowing [8], we are using labeled statements, since we need labels to model
program points to where control can be transferred. We assume that each la-
bel occurs only once which means that the programs are uniquely labeled, and
since this is the case, we can, for a given Core PLEX program S, define the
function Stmt : Lab → Stmt ∪ BExp by Stmt(l) = S′ (or b) precisely
when S contains the statement [S′]l (or condition [b]l). Since the programs
are uniquely labeled, we can also define the inverse to the function S, like
Stmt−1 : Stmt ∪BExp→ Lab

4.2 Core PLEX 29

In Chapter 2.2, we said that the only way to access the code in a block is
through its sub-programs, and since the entry points to the sub-programs are
the signal receiving statements, we will simply regard a signal as an entry label
to a block (and omit the statements for signal reception). Therefore, we define

ELab ⊆ Lab

as the set of signal labels. We need to distinguish between direct signals, and
buffered signals, and we must also distinguish whether the latter are internal
or external. To that end, we partition ELab into three disjoint sets Dir, Buf ,
Ext for the respective labels. Furthermore, we partition Buf into the disjoint
sets LevA, and LevB, in order to capture the different priorities among the
signals. (Recall from Chapter 2.4 that every signal is assigned a priority level.)

When defining the state transitions for the semantics, it then helps to have
a flow graph-oriented description which defines successor labels. Therefore,
we define three functions succ, succT , succF from labels to labels. They are
defined in the style of [8], through the three functions init : Stmt → Lab,
final : Stmt→ P (Lab), and Flow : Stmt→ P (Lab×Lab) in Table 4.2.
Additionally, we also need to define the notion of Interflow, IF, in order to
define Flow(S) for the combined signal sending statement.

Definition 1. For any Core PLEX program S, the partial functions succ,
succT , succF : Lab→ Lab are defined by:

• succ(l) = l′ if (l, l′) ∈ Flow(S) and (l, l′′) ∈ Flow(S) =⇒ l′′ = l′,
otherwise undefined,

• succT (l) = init(S1) if IF [b]l THEN S1 ELSE S2 is a statement in S,
otherwise undefined,

• succF (l) = init(S2), ditto,

Definition 2. For any Core PLEX program S, Interflow, is defined by:

• IF = { (l, cfsig , l′, label) | S contains
[SEND cfsig WAIT FOR cbsig IN label]llabel
as well as [RETURN cbsig]l

′}

Further on, we recall that the code (and the data) is structured in blocks
(Chapter 2.2), and we assume that the program under consideration consists of

30 Chapter 4. Operational Semantics for Core PLEX

S init(S) final(S) Flow(S)
[SKIP]l l {l} ∅

[x := a]l l {l} ∅

S1; S2 init(S1) final(S2) flow(S1) ∪ flow(S2) ∪
{(l, init(S2))| l ∈ final(S1)}

[GOTO label]l l ∅ (l, label)

IF [b]l THEN S1 ELSE S2 l final(S1) ∪ final(S2) flow(S1) ∪ flow(S2) ∪
{(l, init(S1)), (l, init(S2))}

[SEND signal]l l ∅ (l, signal)
(signal ∈ Dir)

[SEND signal]l l {l} ∅
(signal ∈ Buf)

[SEND cfsig WAIT FOR l ∅ (l, cfsig) ∪ (l′, label)
cbsig IN label]llabel l′ = Lab(RETURN cbsig)

[RETURN cbsignal]l l ∅ {(l, label)|(l′, l′′, l, label) ∈ IF}

[TRANSFER signal]l l ∅ (l, signal)

[EXIT]l l ∅ ∅

Table 4.2: Definition of init, final, and Flow. Note that since it is irrelevant
for the definitions of the above functions whether or not a signal carries any
data, we have omitted those cases from the table above.

4.3 A Sequential Semantics 31

β blocks. We then take each integer 1, . . . , β to be the identifier for a unique
block, and we define two functions

BV : Var→ {1, . . . , β}
BL : Lab→ {1, . . . , β}

which decide, for each program variable and program part, respectively, which
block it belongs to. BV andBL induce partitionings of Var and Lab, respec-
tively. Furthermore, we impose the following constraints to ensure that data
accesses do not take place across block borders, and that program control is
not transferred to some other block except through sending a signal. For all
labels l in a Core PLEX program,

Stmt(l) 6= SEND signal =⇒ BL(succ(l)) = BL(l), if succ(l) defined
Stmt(l) ∈ BExp =⇒ BL(succT (l)) = BL(succF (l)) = BL(l)
∀x ∈ FV (Stmt(l)).BV (x) = BL(l)

Here, FV (S) is the set of (free) variables in statement S.
Finally, we recall from Chapter 3.3 that each block is pre-allocated to one of

the threads. For a system with β blocks, and k threads, we define the function

Alloc : {1, . . . , β} → {1, . . . , k}

which for a given block determines which thread it has been allocated to. (We
will use this information in Section 4.4.2, when specifying the parallel seman-
tics for the signal statements.)

4.3 A Sequential Semantics
Since the execution of statements are modeled as state transitions, we begin
this section by defining the state of the system. States are modeled by tuples of
the form

s = 〈VSC, JBA, JBB, σ, δ〉
∈ Lab× [(ELab, data)]× [(ELab, data)]× (Var→ N)× [Lab]

We continue by examine each of the components in the above state.

• We recall (from the previous section) the unstructured nature of the lan-
guage (the use of GOTO’s). For this reason, we have made the program
counter explicit in the state; VSC is a virtual statement counter which

32 Chapter 4. Operational Semantics for Core PLEX

points to the current statement to execute, i.e., VSCi holds the local pro-
gram counter for thread i.

When VSC receives the value ⊥, we denote a state which does not map
to any statement. The system goes idle, and waits for a new job to exe-
cute.

• JBx, where x = {A, B} are sequences of entry (signal) labels to model
the job buffers. We denote the set of finite sequences, with elements
from some set X , by [X], the empty sequence by ε, x : s denotes the
sequence with head x and tail s, and s : x denotes the sequence with the
first elements from s and last element x.
The possible transmission of signal data is captured in the job buffers.
We recall, from Table 4.1, that the signal data is 1 to 25 variables (or
constant values) possibly followed by a number of⊥ (undefined values).
The number 25 is equal to the number of physical registers available.

• The variables in the system are divided into two categories

Var = RM ∪ DS such that RM ∩ DS = ∅

to reflect that some variables (RM) are only used for temporary storage
of data that are local to a job, whereas the other class of variables (DS)
is the shared data that can be accessed by any job that enters the block.
The scope rules for the data implies that the DS can be further divided
into the following disjunct sets

DS = DS1, . . . , DSβ such that DSi ∩ DSj = ∅ for any i 6= j

The contents of the memory, is described by the state σ, and a single
variable x by σ(x). To restrict σ to only the temporary variables (for
instance) we will use the notation σ|RM . In some cases a temporary
variable will be treated as containing an ”empty” value, i.e., its value is
unknown and can’t be used. We will denote this ”absence” of a value
with ⊥.

The notation σ|RM 7→ data will later in this report be used to denote
transfer of the signal data into the temporary storage, and it is used as an
abbreviation for

{xα 7→ dataα | xα ∈ RM ∧ 1 ≤ α ≤ 25}

4.3 A Sequential Semantics 33

• Finally, when specifying the semantics for a combined signal, we must
ensure that we are able to maintain the proper nesting of send, and re-
turn points (see Chapter 2.4, and Fig. 2.7). We therefore add the con-
text information δ to the state. The idea is simply to maintain a list of
’return-labels’ where we ”push” the current label when sending the com-
bined forward signal, and ”pop” it when sending the combined backward
signal.

In the following sections, the semantics for Core PLEX is given in terms of
transition rules from state to state. The transition relation→ specifies how the
statements are executed. The transitions have the form

s
S−→ s′

where Stmt(VSCi) = S (except for the rules, modeling the arrival of an ex-
ternal signal, as well as the rule for starting a new job, whose transitions are
labeled with ε, see Section 4.3.4). When specifying the semantics, we will only
consider the general case; execution on the Traffic handling level (priority B).
The reason is that these are the jobs that are candidates for parallel execution
(Section 4.4).

In an initial start up phase, the state would have the following contents:

s = 〈⊥, ε, ε, σ|RM 7→ ∅|DS 7→ Υ, ε〉

The initial state expresses that the VSCi does not map to any statement; the
temporary storage (RM) is empty; the are no signals in the JBA or JBB
job-buffer (which we recall is modeled as lists of signals). The values of the
variables in the Data Store (DS) are provided by the programmer, or loaded
from external storage depending on if the system is re-started or not, and also
on the different types of the variables. We will not discuss this further (instead
we refer to [9] where this is discussed in more detail) more than to say that the
variables in the DS always have some initial values Υ. δ contains an empty
value since no job has been started yet, and consequently there is no context
information available.

4.3.1 The Basic Statements

Starting in this section, we will specify the semantics for Core PLEX in the
current, single-processor architecture. We begin with what we call the basic

34 Chapter 4. Operational Semantics for Core PLEX

statements, i.e., assignments3, jump-statements, conditionals, and iterations,
and we continue with the semantics for the signal statements in Section 4.3.24.

〈VSC, JBA, JBB, σ, δ〉 x:=a−−−→

〈succ(VSC), JBA, JBB, σ[x 7→ A[[a]]σ], δ〉

We continue with the ”ordinary” IF-THEN-ELSE construct

〈VSC, JBA, JBB, σ, δ〉 IF b THEN S1 ELSE S2−−−−−−−−−−−−−→

〈succT (VSC), JBA, JBB, σ, δ〉
if B[[b]]σ = tt

〈VSC, JBA, JBB, σ, δ〉 IF b THEN S1 ELSE S2−−−−−−−−−−−−−→
〈succF (VSC), JBA, JBB, σ, δ〉

if B[[b]]σ = ff

We also note that there is a ”shortened” version of the IF-THEN-ELSE con-
struct; IF b THEN S1. However, this statement can be expressed in terms of
the above specified IF-THEN-ELSE statement if we take

S2 = SKIP

The IF statement are followed by the GOTO statement, which could be
both conditional and unconditional. The semantics for the unconditional GOTO
is specified as

〈VSC, JBA, JBB, σ, δ〉 GOTO label−−−−−−→
〈label, JBA, JBB, σ, δ〉

For the conditional GOTO statement, IF b GOTO label, we note that with

S1 = GOTO label, and S2 = SKIP

3Obviously, in any kind of assignment, the types of the variables need to match each other. We
will assume that this is the case (and rely on that the compiler detects any kind of violation to this).

4The transition rules for the sequential semantics are summarized in Appendix A.

4.3 A Sequential Semantics 35

this statement, similarly to the above ”shortened” IF-THEN-ELSE construct,
can be expressed in terms of the already specified
IF b THEN S1 ELSE S2 statement!

4.3.2 The Signal Statements
Before we continue with the semantics for the different signal statements, we
recall (from Section 4.2) that we regard a signal as an entry label to a block, and
that we have defined ELab ⊆ Lab as the set of signal labels. Further more,
ELab has been partitioned into the disjoint sets Dir, Buf , Ext in order to
distinguish between direct, buffered, and external signals. Buf has then been
partitioned into the disjoint sets LevA, and LevB, in order to capture the
different priorities among the signals.

We begin this part with the statements for the single5 signals

〈VSC, JBA, JBB, σ, δ〉 SEND signal−−−−−−−→

〈signal, JBA, JBB, σ|RM 7→ ⊥, δ〉

if signal ∈ Dir

〈VSC, JBA, JBB, σ, δ〉 SEND signal WITH data−−−−−−−−−−−−−→

〈signal, JBA, JBB, σ|RM 7→ data, δ〉

if signal ∈ Dir

The following rules deal with the sending of a buffered signal. The first two
cases deals with the sending of a priority A signal, whereas the last two handles
signals of priority B.

〈VSC, JBA, JBB, σ, δ〉 SEND signal−−−−−−−→

〈succ(VSC), JBA : (signal,⊥), JBB, σ, δ〉

if signal ∈ Buf , signal ∈ LevA

5The single signals do not, in contrast to the combined signals, require a reply. For a discussion
about the different signal properties, see Chapter 2.4.

36 Chapter 4. Operational Semantics for Core PLEX

〈VSC, JBA, JBB, σ, δ〉 SEND signal WITH data−−−−−−−−−−−−−→

〈succ(VSC), JBA : (signal, data), JBB, σ, δ〉

if signal ∈ Buf , signal ∈ LevA

〈VSC, JBA, JBB, σ, δ〉 SEND signal−−−−−−−→

〈succ(VSC), JBA, JBB : (signal,⊥), σ, δ〉

if signal ∈ Buf , signal ∈ LevB

〈VSC, JBA, JBB, σ, δ〉 SEND signal WITH data−−−−−−−−−−−−−→

〈succ(VSC), JBA, JBB : (signal, data), σ, δ〉

if signal ∈ Buf , signal ∈ LevB

The concept of combined signals is shown in Fig. 4.1, and we recall from
Chapter 2.4 that the difference between a combined signal and other direct
signals6 is that the combined signal always requires an answer (a reply signal).

6A combined signal, as well as a local signal, is always direct!

4.3 A Sequential Semantics 37

Execution
…

SEND Signal-A
(Forward)

Execution halted !

RETRIEVE Signal-A
(Backward)

Block A

RECEIVE Signal-A
(Forward)

Execution

RETURN Signal-A
(Backward)

Block B

Figure 4.1: The PLEX statements for sending/receiving combined signals. Note
that the signal receiving statements is omitted in Core PLEX (see Chapter 4.2).

The semantics for the combined signals are as follows

〈VSC, JBA, JBB, σ, δ〉 SEND cfsig WAIT FOR cbsig IN label−−−−−−−−−−−−−−−−−−−−−→

〈cfsig , JBA, JBB, σ|RMi 7→ ⊥, label : δ〉

〈VSC, JBA, JBB, σ, δ〉 SEND cfsig WITH data WAIT FOR cbsig IN label−−−−−−−−−−−−−−−−−−−−−−−−−−−→

〈cfsig , JBA, JBB, σ|RMi 7→ data, label : δ〉

〈VSC, JBA, , JBB, σ, label : δ〉 RETURN cbsig−−−−−−−−→

〈label, JBA, JBB, σ|RMi
7→ ⊥, δ〉

〈VSC, JBA, JBB, σ, label : δ〉 RETURN cbsig WITH data−−−−−−−−−−−−−−→

〈label, JBA, JBB, σ|RMi 7→ data, δ〉

We end this section with the semantics for the local signals, and as was
said in Chapter 2.4, the difference between local and non-local signals is that
the former is sent between entities in the same block, whereas the latter is sent
between entities in different blocks. This means that no variable values are
destroyed by a local signal statement, which is the case with non-local signals

38 Chapter 4. Operational Semantics for Core PLEX

(where the variables in the Register Memory (RM) are destroyed).

〈VSC, JBA, JBB, σ, δ〉 TRANSFER signal−−−−−−−−−−→
〈signal, JBA, JBB, σ, δ〉

〈VSC, JBA, JBB, σ, δ〉 TRANSFER signal WITH data−−−−−−−−−−−−−−−−→
〈signal, JBA, JBB, σ|RMi

7→ data \ ⊥, δ〉

4.3.3 The EXIT Statement
We recall from Chapter 2.2, that the EXIT statement marks the termination of
an ongoing job. At termination, a new job is immediately started as the control
is transferred to the first signal label in the job queue. However, a job of priority
B is only allowed to be started if there isn’t any job of priority A waiting to be
executed. This motivates the two different EXIT-transitions.

〈VSC, (signal, data) : JBA, JBB, σ, δ〉 EXIT−−−→
〈signal, JBA, JBB, σ|RM 7→ data, δ〉

〈VSC, ⊥, (signal, data) : JBB, σ, δ〉 EXIT−−−→
〈signal, ⊥, JBB, σ|RM 7→ data, δ〉

4.3.4 Additional transitions
The following transitions models the insertion from the environment of an ex-
ternal signal into a job queue. Note that the external signal can be of priority A
or priority B. The rules are always enabled, and they introduce nondeterminism
into the semantics:

〈VSC, JBA, JBB, σ, δ〉 ε−→
〈VSC, JBA : (signal, data), JBB, σ, δ〉

if signal ∈ Ext, signal ∈ LevA

〈VSC, JBA, JBB, σ, δ〉 ε−→
〈VSC, JBA, JBB : (signal, data), σ, δ〉

if signal ∈ Ext, signal ∈ LevB

4.3 A Sequential Semantics 39

4.3.5 Translating Selection, and Iterations Statements into
Core PLEX

As said in Section 4.2, the PLEX statements for iteration and selection are
omitted in Core PLEX. We therefore conclude the sequential semantics part
with translating the omitted statements into equivalent Core PLEX statements.

The statement for selection (CASE) is in many ways similar to the SWITCH
statement in C. The CASE statement has the general form

CASE expression IS {WHEN choice DO S}+ OTHERWISE DO Sn

where the {WHEN choice DO S} part can be repeated any number of times.
When used by the programmer, the statement is written in the following man-
ner;

CASE expression IS WHEN choice1 DO S1

WHEN choice2 DO S2

. . .
OTHERWISE DO Sn

and similarly to the already specified conditional GOTO-, and the shortened
IF-statements (Section 4.3.1), we can express the CASE statement in terms of
the IF-THEN-ELSE statement in the following way;

IF [expression = choice1]l THEN S1 ELSE S
′

2, where

S
′

2 = IF [expression = choice2]l
′
THEN S2 ELSE S

′

3, and

S
′

n-1 = IF [expression = choicen-1]l
′′
THEN Sn-1 ELSE Sn

Next, we look at the different iteration statements that are available in PLEX.
From [14], we know that the well known While statement is missing in PLEX.
The main reason is that this construct may give rise to unpredictable execution
times, something that should be avoided in a real-time system7. Instead, PLEX
offers three different statements for iteration which are all used for scanning
files or indexed variables between given start and stop values.

The general form of the first statement, ON, is one of the following

7The AXE system has been classified as a soft real-time system by Arnström et. al in [15].

40 Chapter 4. Operational Semantics for Core PLEX

ON pointer/variable FROM expression1 UPTO expression2 DO S

ON pointer/variable FROM expression1 DOWNTO expression2 DO S

where the statement S is executed a number of times (i.e., until expression1

equals expression2). And similar to some of the discussed statements above,
we can express these statements in terms of already specified statements. With
the assumption that i is a variable not already used by some code, we can re-
write the first statement in the following way

i = expression1

LFalse) IF i = expression2 THEN GOTO LTrue
S
i = i+1
GOTO LFalse

LTrue) remaining statements

The re-writing for the second case is analog, simply replace i = i+1 with i = i-1
in the above code. This re-writing does in fact mimic the behavior of a standard
compiler generating intermediate code for a corresponding WHILE loop8.

The second iteration statement, FOR ALL, which iterates from expression1

down to expression2 (which can be omitted if it is 0)

FOR ALL pointer/variable FROM expression1 UNTIL expression2 DO S

is expressed in the same way as the ON . . .DOWNTO . . . statement;

i = expression1

LFalse) IF i = expression2 THEN GOTO LTrue
S
i = i-1
GOTO LFalse

LTrue) remaining statements

The last statement for iteration, FOR FIRST, is similar to the FOR ALL
statement, except that the loop is aborted as soon as the conditional part is
fulfilled.

8See for instance [16]

4.4 A Parallel Semantics 41

FOR FIRST pointer/variable FROM expression1 UNTIL expression2 WHERE

condition IS CHANGED TO expression3 DO S

The FOR FIRST statement is expressed as:

i = expression1

LStart) IF i = expression2 THEN GOTO LDone
IF variable = expression3 THEN GOTO LNext
i = i-1
GOTO LStart

LNext) S
LDone) remaining statements

4.4 A Parallel Semantics
The parallel semantics in this thesis models the execution of PLEX on the ar-
chitecture and run-time system described in Chapter 3. Logically, the execution
is done by a static number of threads, which may or may not equal the number
of processors. Each thread has its own local state and a number of pre-allocated
blocks, which are only executed by the thread they have been allocated to. The
”remaining” blocks can be executed by any of the threads, and we say that
these blocks execute in ”parallel mode”.

Similar to the sequential semantics (in Section 4.3), the parallel semantics
is given in terms of state transitions, but whereas the sequential semantics only
needed to consider ’one’ state;

〈VSC, JBA, JBB, σ, δ〉

the parallel semantics will need to consider ’several’ states simultaneously; for
a system with k threads, each parallel state is a k+1-tuple 〈s1, . . . , sk, sG〉,
where each si (i = 1, . . . , k) is a local state and sG is a global (or shared) state.
The states we consider will have the following appearance:

s1 = 〈VSC1, JBA, JBB1, Locks1,F1, δ1〉
∈ Lab× [(ELab, data)]× [(ELab, data)]× P (LVar)× [[ELab]]× [Lab]

si = 〈VSCi, JBBi, Locksi,Fi, δi〉
∈ Lab× [(ELab, data)]× P (LVar)× [[ELab]]× [Lab], i = {2, . . . , k}

sG = 〈σ, σL〉 ∈ (Var→ N)× (LVar→ {0, 1})

42 Chapter 4. Operational Semantics for Core PLEX

This models a system where each local state si can be modified only by thread
i, but where the global state can be modified by any of the threads. The reason
for the explicit specification of local state s1 is that the corresponding thread
(T1) is the only thread that are allowed to execute jobs of priority A (urgent
operating system jobs) as well as of priority C/D (administrative jobs). Any
other thread is only allowed to execute jobs of priority B (traffic handling). Also
note that, since the local part of the state s is associated with the threads instead
of the processors, we can leave the actual number of processors unspecified,
and neither do we have to consider how many threads each processor executes.
The components in the above state are explained below.

• VSCi now holds the local program counter for thread Ti.

• JBx, where x = {A, B} are sequences of entry (signal) labels as defined
in Section 4.3.

• Since the code we consider may be accessed by any of the k threads, the
variables in the system, σ, are now found in the global part of the state,
sG. The division

Var = RM ∪ DS such that RM ∩ DS = ∅

made in Section 4.3 is still valid. However, the fact that some variables
(RM) are only used for temporary storage of data that are local to a job
implies that RM can be divided into the following disjunct sets

RM = RM1, . . . , RMk such that RMi ∩ RMj = ∅ for any i 6= j

to capture the temporary variables used by the job executing at thread Ti.

The notation σ|RM 7→ data has already been covered in Section 4.3.
Here, we only note that we will now write σ|RMi

7→ data to denote

{xα 7→ dataα | xα ∈ RMi ∧ 1 ≤ α ≤ 25}

• In Chapter 3, we said that the parallel run-time system uses a locking
scheme to protect a block from being concurrently accessed by two dif-
ferent jobs (from different job-trees). Therefore, we introduce the set
LVar, which is a set of β binary lock variables L1, . . . , Lβ , distinct
from any variables in Var. In the ’prototype’, every block is guarded by
one specific lock, but since one lock may guard several blocks, Li may

4.4 A Parallel Semantics 43

equal Lj for some i and j. When a job is about to execute code in a spe-
cific block, it will acquire the associated lock, and during its execution,
a job will collect one or several locks. Thus, in the local state si, Locksi
is the set of locks currently acquired by i. Only the thread that holds Lγ
can access block γ. For the global state sG, σL holds the current state of
the lock variables: σL(Lγ) = 1 exactly when Lγ ∈ Locksi for some i.

• Earlier (in Chapter 3) we said that jobs from the same job-tree are exe-
cuted in the same sequential order as in the single-processor case, which
implies that we need to keep track of the different job-trees. A compli-
cating factor is that at the termination of a job, the corresponding job-tree
might migrate to another thread. To model this, the job-trees are made
explicit in the program state:

– F is a list of job-trees, where each job-tree is a list of jobs. For
each job-tree [sig : T] holds that sig always is executed before any
other job in T (as can be seen in the first transition in Section 4.4.4).
The creation of a job-tree is captured in Section 4.4.4 as well. The
job-trees in Fi might have been generated at other threads, but will
continue their execution on thread Ti.
The basic elements (signals) are always the same in JBBi and Fi,
but where each JBB is a list of signals, is the corresponding F
a list of lists of signals. The purpose is to collect each job-tree in
JBBi in a separate list in Fi.

– The first element of Fi will always be the job-tree currently exe-
cuting on thread Ti.

– To denote the removal of job-tree JT from F , we will write
F - JT , and define the operator - on lists in the following way

[]− l = []
l − [] = l
a : l − a : l′ = l − l′
a : l − a′ : l′ = a(l − a′ : l′)
a 6= a′

• The context information δ is now associated with thread Ti, and is cor-
respondingly indexed δi.

For each parallel rule we omit the parts of the state that are not modified by
the transition, which typically means that only the local part si, for some thread

44 Chapter 4. Operational Semantics for Core PLEX

i, and the global part sG are visible in the transition rules. The transitions9 will
now have the form

s
S, i−−→ s′

for a transition that affects the local memory of thread Ti, and where
Stmt(VSCi) = S. Similar to the sequential semantics, there are also some
transitions labeled with ε; the rules modeling the arrival of an external signal,
as well as the rule for starting a new job10 are found in Section 4.4.4.

As in Section 4.3, we will only consider the general case; execution on the
Traffic handling level (priority B). The reason is that these are the jobs that
would be executed in parallel.

The initial start up state would have the following contents:

s1 = 〈⊥, ε, ε, ∅, ε, ε〉
si = 〈⊥, ε, ∅, ε, ε〉, i = {2, . . . , k}
sG = 〈σ|RM 7→ ∅|DS 7→ Υ, {Lγ 7→ 0 | Lγ ∈ σL}〉

This state expresses that the local parts of the state are empty, i.e., the
VSCi does not map to any statement; the temporary storage (RMi) is empty;
the are no signals in the JBBi job-buffer; and there are no locks collected (as
indicated by ∅ at the place for Locksi). Job buffer A is empty as well, and
each lock Lγ is available (i.e., no block is locked). Fi contains an empty value
since no job has been started yet, and consequently there are no job-trees built
either. This goes for δi as well, i.e., since no jobs has been executed, there are
no context information available.

4.4.1 The Basic Statements
The parallel transition rules for the basic statements are straightforward ”par-
allelizations” of the similar rules for the sequential semantics in Section 4.3.1,
and they should not need any further explanation11.

If nothing else is stated, the transitions in the following sections will be
given for thread Ti where i = {2, . . . , k}. The corresponding transitions exist
for T1 as well. However, we have chosen not to show them since they are
almost identical (except for JBA in the local state s1).

9Similar to Section 4.3,→ defines the transition relation.
10Unlike the sequential semantics, the transition for the EXIT statement does not start a new

job, only terminates the current one. This is further discussed in Section 4.4.3.
11The parallel semantics is summarized in Appendix B.

4.4 A Parallel Semantics 45

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
x:=a, i−−−−→

〈succ(VSCi), JBBi, Locksi, Fi, δi, 〈σ[x 7→ A[[a]]σ], σL〉〉

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
IF b THEN S1 ELSE S2, i−−−−−−−−−−−−−−−→

〈succT (VSCi), JBBi, Locksi, Fi, δi, 〈σ, σL〉〉

if B[[b]]σ = tt

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
IF b THEN S1 ELSE S2, i−−−−−−−−−−−−−−−→

〈succF (VSCi), JBBi, Locksi, Fi, δi, 〈σ, σL〉〉

if B[[b]]σ = ff

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
GOTO label, i−−−−−−−−→

〈label, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉

4.4.2 The Signal Statements

Before we continue with the semantics for the different signal statements, we
need to cover the receiver of a specific signal (i.e., the receiving thread). For
direct, and buffered signals12the following applies:

Direct signals: since a job is not allowed to leave the thread that starts execut-
ing it (which further motivates our decision to associate the local parts
of the state s with the threads, and not with the processors, as we did in
Section 4.4), the signal sending statement, and the code that is executed
as a result of the signal sending, will always be executed by the same
thread.

12We recall (Chapter 2.4) that from a semantical point of view, the main distinction is between
direct and buffered signals; a direct signal continues an ongoing job whereas a buffered one spawns
off a new job.

46 Chapter 4. Operational Semantics for Core PLEX

Buffered signals: for buffered signals the situation is slightly different since
we have to consider if the receiving block is an FD-mode or a CMX-
mode block. Since FD-mode blocks always are executed by the thread
that they were allocated to (see Chapter 3.3), a buffered signal to an FD-
mode block will be received by this thread, i.e., the signal is placed in
the job buffer associated with the thread in question.

To answer the question of which thread that receives a buffered signal
sent to a specific CMX block, we have to point out that there are three
different types of CMX-mode blocks, where the type of the block deter-
mines where the signal is to be buffered. Which buffer that is to receive
the buffered signal (which also means that the corresponding thread will
execute the block) is given by Table 4.3, where we also see when infor-
mation about the Home thread for a given CMX-mode block (which we
discussed in Chapter 3.3) is of importance.

Buffered signal sent to: Buffered signal received by:
CMX-mode block, Type-1 buffer associated with the sending thread
CMX-mode block, Type-2 buffer associated with the Home thread
CMX-mode block, Type-3 buffer associated with thread as specified

by initial configuration data.

Table 4.3: Receiving buffers for buffered signals to CMX-mode blocks.

As we have seen, a buffered signal will be executed either by the thread
its corresponding block has been allocated to (in case of an FD-mode
block, or a CMX-mode block of Type 2), the thread that sends the signal
(in case of CMX Type 1), or by the thread specified in the configuration
data (CMX Type 3). This means that as soon as we know the execution
mode of the receiving block we will also know which thread that will
execute the buffered signals sent to that block. Therefore, we define the
function

Type : {1, . . . , β} → {FD,CMX1, CMX2, CMX3}

which for a given block determines the execution mode for the same
block.

Now, since we can determine both the execution mode as well as the
thread a given block has been allocated to, we can determine the receiver

4.4 A Parallel Semantics 47

of any buffered signal (i.e., the thread that will execute the signal). To
do this, we define the function

Receiver : ELab→ {1, . . . , k}

in the following way

Receiver(signal) =

Alloc(BL(signal)) if Type(BL(signal))
=FD

i if Type(BL(signal))
=CMX1

Alloc(BL(signal)) if Type(BL(signal))
=CMX2

Υ if Type(BL(signal))
=CMX3

where i = id of the sending thread, and Υ = value specified in configura-
tion data.

However, we must emphasize that a buffered signal (of priority B) sent
from thread Ti always is buffered in Tis own job buffer, at a first step,
before the signal is moved to a job buffer according to the above scheme.
The reason is the restricted execution model (which we discussed in
Chapter 3) where jobs from the same job-tree are prevented from be-
ing executed concurrently. We will later in this section (in the rules for
sending a buffered signal), and in Section 4.4.3, see how we deal with
the described restrictions.

Finally, the handling of lock variables in the transitions models the lock han-
dling in the parallel ’prototype’. The transitions for sending a direct signal
attempt to transfer control to a possibly new block, but will not be enabled
unless the corresponding lock is free. In the transition, the executing thread
will then atomically take the lock. For the termination of a job (EXIT), the
transitions are divided in two parts: one transition for EXIT which releases all
the locks held by the thread, and one ’job’-transition that can succeed when
the lock of the block is free. The effect of this is that locks are successively
collected by a job, and then released all together when the job terminates.

48 Chapter 4. Operational Semantics for Core PLEX

With the above discussion, we are ready to approach the semantics for the
signal sending statements, and we start with the semantics for the single13 sig-
nals

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
SEND signal, i−−−−−−−−→

〈signal, JBBi, Locksi ∪ {Lγ}, Fi, δi, 〈σ|RMi
7→ ⊥, σL[Lγ 7→ 1]〉〉

if signal ∈ Dir, γ = LB(signal), (σL(Lγ) = 0 ∨ Lγ ∈ Locksi)

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
SEND signal WITH data, i−−−−−−−−−−−−−−−→

〈signal, JBBi, Locksi ∪ {Lγ}, Fi, δi, 〈σ|RMi
7→ data, σL[Lγ 7→ 1]〉〉

if signal ∈ Dir, γ = LB(signal), (σL(Lγ) = 0 ∨ Lγ ∈ Locksi)

The following rules deal with the sending of a buffered signal. The first two
cases deals with the sending of a priority A signal, which is immediately in-
serted in JBA of s1. (Note that we in this case have to consider two local
states; s1, and si.) The last two cases are the general cases, i.e., a signal of
priority B inserted at JBBi of si (where i = {2, . . . , k}).

We would also like to stress that the statement for sending a buffered signal
is currently subject to change. The proposed change is discussed at the end of
this section.

〈s1, . . . , si, . . . , 〈σ, σL〉〉
SEND signal, i−−−−−−−−→ 〈s′1, . . . , s′i, . . . , 〈σ, σL〉〉

where s1 = 〈VSC1, JBA, JBB1, Locks1, F1, δ1〉
si = 〈VSCi, JBBi, Locksi, Fi, δi〉
s′1 = 〈VSC1, JBA : (signal,⊥), JBB1, Locks1, F1 : [signal], δ1〉
s′i = 〈succ(VSCi), JBBi, Locksi, Fi, δi〉

if signal ∈ Buf , signal ∈ LevA

13The single signals do not, in contrast to the combined signals, require a reply. For a discussion
about the different signal properties, see Chapter 2.4.

4.4 A Parallel Semantics 49

〈s1, . . . , si, . . . , 〈σ, σL〉〉
SEND signal WITH data, i−−−−−−−−−−−−−−−→ 〈s′1, . . . , s′i, . . . , 〈σ, σL〉〉

where s1 = 〈VSC1, JBA, JBB1, Locks1, F1, δ1〉
si = 〈VSCi, JBBi, Locksi, Fi, δi〉
s′1 = 〈VSC1, JBA : (signal, data), JBB1, Locks1,

F1 : [signal], δ1〉
s′i = 〈succ(VSCi), JBBi, Locksi, Fi, δi〉

if signal ∈ Buf , signal ∈ LevA

〈VSCi, JBBi, Locksi, [T] : Fi, δi, 〈σ, σL〉〉
SEND signal, i−−−−−−−−→

〈succ(VSCi), JBBi : (signal,⊥), Locksi, [T : signal] : Fi, δi, 〈σ, σL〉〉

if signal ∈ Buf , signal ∈ LevB

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
SEND signal WITH data, i−−−−−−−−−−−−−−−→

〈succ(VSCi), JBBi : (signal, data), Locksi, [T : signal] : Fi, δi, 〈σ, σL〉〉

if signal ∈ Buf , signal ∈ LevB

The concept of combined signals was shown in Fig. 4.1, and we recall
from Chapter 2.4 that the difference between a combined signal and other direct
signals14 is that the combined signal always requires an answer (a reply signal).

The semantics for the combined signals are as follows

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
SEND cfsig WAIT FOR cbsig IN label, i−−−−−−−−−−−−−−−−−−−−−−→

〈cfsig , JBBi, Locksi ∪ {Lγ}, Fi, label : δi, 〈σ|RMi
7→ ⊥, σL[Lγ 7→ 1]〉〉

if γ = LB(cfsig), (σL(Lγ) = 0 ∨ Lγ ∈ Locksi)

14A combined signal, as well as a local signal, is always direct!

50 Chapter 4. Operational Semantics for Core PLEX

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
SEND cfsig WITH data WAIT FOR cbsig IN label, i−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

〈cfsig , JBBi, Locksi∪{Lγ}, Fi, label : δi, 〈σ|RMi 7→ data, σL[Lγ 7→ 1]〉〉

if γ = LB(cfsig), (σL(Lγ) = 0 ∨ Lγ ∈ Locksi)

〈VSCi, JBBi, Locksi, Fi, label : δi, 〈σ, σL〉〉
RETURN cbsig, i−−−−−−−−−→

〈label, JBBi, Locksi, Fi, δi, 〈σ|RMi 7→ ⊥, σL〉〉

〈VSCi, JBBi, Locksi, Fi, label : δi, 〈σ, σL〉〉
RETURN cbsig WITH data, i−−−−−−−−−−−−−−−→

〈label, JBBi, Locksi, Fi, δi, 〈σ|RMi
7→ data, σL〉〉

The transition rules for the local signals are straightforward parallel ver-
sions of corresponding sequential rules.

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
TRANSFER signal, i−−−−−−−−−−−→

〈signal, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
TRANSFER signal WITH data, i−−−−−−−−−−−−−−−−−−→

〈signal, JBBi, Locksi, Fi, δi, 〈σ|RMi
7→ data \ ⊥, σL〉〉

In conjunction with the semantics for the sending of a buffered signal, we
mentioned (on page 48) that the statement is currently subject to change. In its
current ’version’ the sending of a buffered signal results in a new job within the
same job-tree, whereas with the new, proposed/suggested, extension it should
be possible to use a specific keyword (JOBTREE (?)) with a new job-tree as
the result.

4.4 A Parallel Semantics 51

This will increase the level of parallelism since there would be no sequen-
tial order to maintain between the job that sends the signal, and the job that
will be the result of the signal. For this reason, this new buffered signal can be
sent directly to its destination (i.e., be put in the appropriate buffer) instead of
being put in the buffer of the sending thread as the ’ordinary’ buffered signal
are done (to maintain the previously described sequential order).

The semantics for the new buffered signal is as follows:

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
SEND signal JOBTREE, i−−−−−−−−−−−−−−→

〈succ(VSCi), JBBi : (signal,⊥), Locksi, Fi : [signal], δi, 〈σ, σL〉〉

if signal ∈ Buf , Receiver(signal) = i

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
SEND signal JOBTREE WITH data, i−−−−−−−−−−−−−−−−−−−−→

〈succ(VSCi), JBBi : (signal, data), Locksi, Fi : [signal], δi, 〈σ, σL〉〉

if signal ∈ Buf , Receiver(signal) = i

In the following two rules, we must consider two local states (si and sj) in the
case i 6= j since they model the case when the buffered signal is sent directly
to its destination. As in the other cases, we show only those parts of the state
〈s1, . . . , sk, sG〉 that are effected of the transition (in this case si, and sj).

〈. . . , si, sj , . . . , 〈σ, σL〉〉
SEND signal JOBTREE, i−−−−−−−−−−−−−−→ 〈. . . , s′i, s′j , . . . , 〈σ, σL〉〉

where si = 〈VSCi, JBBi, Locksi, Fi, δi〉
sj = 〈VSCj , JBBj , Locksj , Fj , δj〉
s′i = 〈succ(VSCi), JBBi, Locksi, Fi, δi〉
s′j = 〈VSCj , JBBj : (signal,⊥), Locksj , Fj : [signal], δj〉

if signal ∈ Buf , Receiver(signal) = j 6= i

52 Chapter 4. Operational Semantics for Core PLEX

〈. . . , si, sj , . . . , 〈σ, σL〉〉
SEND signal JOBTREE WITH data, i−−−−−−−−−−−−−−−−−−−−→ 〈. . . , s′i, s′j , . . . , 〈σ, σL〉〉

where si = 〈VSCi, JBBi, Locksi, Fi, δi〉
sj = 〈VSCj , JBBj , Locksj , Fj , δj〉
s′i = 〈succ(VSCi), JBBi, Locksi, Fi, δi〉
s′j = 〈VSCj , JBBj : (signal, data), Locksj , Fj : [signal], δj〉

if signal ∈ Buf , Receiver(signal) = j 6= i

4.4.3 The EXIT Statement
When the EXIT statement was covered in the sequential semantics (Section
4.3.3), we noted that the transition specified the termination of the current job,
as well as the start of a new job. This is not the case for its parallel counterpart
(as we indicated in Section 4.4.2, on page 47). The semantics for the EXIT
statement below is only concerned with termination of the ongoing job (i.e.,
releasing of the locks collected by the job). The transition for starting a new job
is postponed to the following section. The reason for this division is the lock
handling mechanism; the transition for the EXIT statement releases all locks
held by the thread, whereas the transition for starting a new job can succeed
only when the lock of the block is free, and then lets the thread acquire the
lock. Without this division, other threads would never be allowed to execute
code in the block.

The below rules for the EXIT statement models (1) the termination of the
currently executed job-tree, (2) that the job-tree hasn’t terminated and will con-
tinue its execution on Ti, and (3) that the job-tree migrates to Tj . Note that the
last rule (when the job-tree migrates) must consider two local states; si and sj .

〈VSCi, JBBi, Locksi, [] : Fi, δi, 〈σ, σL〉〉
EXIT, i−−−−→

〈⊥, JBBi, ∅, Fi, δi, 〈σ, σL[Lγ 7→ 0, Lγ ∈ Locksi]〉〉

4.4 A Parallel Semantics 53

〈VSCi, JBBi, Locksi, [signal : T] : Fi, δi, 〈σ, σL〉〉
EXIT, i−−−−→

〈⊥, JBBi, ∅, [signal : T] : Fi, δi, 〈σ, σL[Lγ 7→ 0, Lγ ∈ Locksi]〉〉

if Receiver(signal) = i

〈. . . , si, sj , . . . , sG〉
EXIT, i−−−−→ 〈. . . , s′i, s′j , . . . , s′G〉

where si = 〈VSCi, JBBi, Locksi, [signal : T] : Fi, δi〉
sj = 〈VSCj , JBBj , Locksj , Fj , δj〉
sG = 〈σ, σL〉
s′i = 〈⊥, JBBi − {(signal, data) : T }, ∅, Fi, δi〉
s′j = 〈VSCj , JBBj : (signal, data) : T , Locksj ,

Fj : [signal : T], δj〉
s′G = 〈σ, σL[Lγ 7→ 0, Lγ ∈ Locksi]〉

if Receiver(signal) = j 6= i

4.4.4 Additional transitions
The following rule deals with the start of a new job. The transition succeeds
when the lock of the corresponding block is free, and if job buffer A of local
state s1 is empty. The second condition models the fact that jobs on traffic level
(priority B) must wait for jobs of priority A. (The different levels of priority
among jobs were discussed in Section 4.4.)

〈⊥, (signal, data) : JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
ε,i−→

〈signal, JBBi, {Lγ}, [T] : Fi − [signal : T], δi,

〈σ|RMi 7→ data, σL[Lγ 7→ 1]〉〉

if γ = LB(signal), σL(Lγ) = 0, s1(JBA) = ε

The last transitions models the insertion from the environment of an external
signal into a job queue. Note that the external signal can be of priority A

54 Chapter 4. Operational Semantics for Core PLEX

or priority B. In the first case, the external signal is inserted in JBA of s1.
The second case is the general case, i.e., priority B inserted in JBBi of si
(where i = {2, . . . , k}). The rules are always enabled, and they introduce
nondeterminism into the semantics:

〈VSC1, JBA, JBB1, Locks1, F1, δ1, 〈σ, σL〉〉
ε,i−→

〈VSC1, JBA : (signal, data), JBB1, Locks1, F1 : [signal], δ1, 〈σ, σL〉〉

if signal ∈ Ext, signal ∈ LevA

〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
ε,i−→

〈VSCi, JBBi : (signal, data), Locksi, Fi : [signal], δi, 〈σ, σL〉〉

if signal ∈ Ext, signal ∈ LevB

4.4.5 Global Transitions
In Section 4.4.1 - 4.4.4, we have defined the meaning of each individual Core
PLEX statement, when executed ’locally’ by thread Ti. However, the descrip-
tion is not complete as long as we don’t consider the concurrently executing
threads.

We recall (from Section 4.4) that the state we consider is defined by the
tuple 〈s1, . . . , sk, sG〉, where each si (i = 1, . . . , k) is a local state and sG is a
global state that can be modified by any of the threads.

The following rules, valid for any i where 0 ≤ i ≤ k, specify the global
transitions15

si −→ s′i
〈s1, . . . si, . . . , sk, sG〉 → 〈s1, . . . s′i, . . . , sk, sG〉

si −→ s′i
〈s1, . . . si, . . . , sk, sG〉 → 〈s1, . . . s′i, . . . , sk, s′G〉

The rules state that whenever there is a local transition at thread Ti, there
is a corresponding global transition that only affects the local part of the state
si (first case), or that affects the local, as well as the global, part of the state
(second case).

15The transitions are of standard form as used for instance in [17]

Chapter 5

Case Study: Examining
Potential Memory Conflicts

In order to estimate the possibility for parallel execution of the existing PLEX
code, we have performed a static program analysis of the potential memory
conflicts that actually can arise. A second motivation for this case-study was
to get ideas on the characteristics of the analysis that needs to be specified (as
discussed in Chapter 1.2).

The number of conflicts are measured as the relative numbers of different
signals that can interfere with each other through the shared data areas. Ini-
tially, we assumed the worst case scenario; i.e., a conflict between every pair
of examined signals. This assumption corresponds to a 100% conflict rate be-
tween the examined signals. However, our results show that compared to a
straightforward parallel implementation, where each shared data area is pro-
tected by a lock, we can by a simple static analysis of the data usage reduce the
potential conflicts between signals to be in the range 0-76% for the observed
signals, thereby reducing the amount of manual work that probably still needs
to be performed in order to adapt the code for parallel processing.

5.1 Analysis of Conflicts
We say that two signals in the same block are in conflict if they might access
the same variable in such a way that the consistency of data is threatened if the
code triggered by the signals is executed concurrently. This is the case if both

55

56 Chapter 5. Case Study: Examining Potential Memory Conflicts

signals might access the variable and at least one may write to it. If two signals
are not in conflict, they may safely be executed concurrently with no protection
at all. A run-time system may use this information to lock a block selectively
only for signals that are in conflict. This improves on the parallel architecture
in Chapter 3, which locks a block as soon as one of its signals is executed.

To determine whether or not two signals might be in conflict with each
other, the usage of each variable in each signal is classified in the following
way:

⊥ - The variable is never used by the signal in question.
R - Read Only, i.e., the only way the signal is accessing the variable is

in read operations.
W - If the signal accesses the variable, the first access will always be a

write operation.
> - It is not possible to (statically) classify the variable according to

the previous cases, i.e., the usage of the variable might be input
dependent, or there might be different paths through the code that
use the variable in different ways. It might also be the case that the
signal performs a read operation as a first access to the variable.

>

R

~~~~~~~~~
W

AAAAAAAAA

⊥

@@@@@@@@@

}}}}}}}}}

Figure 5.1: The hierarchical ordering of variable usage.

Based on our knowledge on how the variables are used, we can order them
in a hierarchical way as in Fig. 5.1, where we go from absolute knowledge (⊥-
never used) to actually no knowledge at all (>- can’t always be determined).
We also make the following observations:

• A variable that is never used (⊥) can never cause the signal to be in
conflict with other signals.



5.2 Examining the Code 57

• The value of a Read Only variable is only used (read from), and similar
to ⊥ does not cause the signal to be in conflict with other signals unless
some other signal writes to the variable.

• For a variable classified asW , we notice that if every signal that accesses
the variable always performs a write as a first possible access, it will be
safe to perform the following transformation; let each signal work on a
local copy of the variable. This does not change the semantics of the
program since no signal will ever use a value written by another signal,
regardless of whether or not this transformation is performed. We denote
this transformation as ’w-optimization’ in the following sections.

• Since an unambiguous use of a variable classified as> can not be deter-
mined, we must always assume a potential conflict between signals that
use this variable.

A conflict matrix for each block would then be straight forward to deduce
based on the classification of variables. We give a small example; consider
three signals Sig1, 2, 3, and three variables V ar1, 2, 3. Table 5.1 shows how
the signals use the variables, as well as the corresponding conflict matrix. The
conflict matrix indicates potential conflicts between Sig1 and Sig2, and be-
tween Sig1 and Sig3. Sig2 and Sig3 can however execute concurrently.

V ar1 V ar2 V ar3 Sig1 Sig2 Sig3
Sig1 R W ⊥ Sig1 X X
Sig2 R R R Sig2 X
Sig3 ⊥ R R Sig3 X

Table 5.1: Variable usage in three example signals, together with a correspond-
ing conflict matrix.

Once the conflict matrix has been constructed, it could for instance be used
by the run-time system to perform a table look-up before allowing a signal to
start executing.

5.2 Examining the Code
As we said in the previous section, only a subset of the blocks are executed
in ”parallel mode” which means that they may be executed by any thread,



58 Chapter 5. Case Study: Examining Potential Memory Conflicts

and consequently are candidates for parallel execution. Other blocks are not
considered in this study. Furthermore, every block might also, besides ”call
processing code” (i.e., handling of telephone calls), contain some administra-
tive code (e.g., charging for a call). Since administrative code is not allowed
to execute while there is call processing work to be done, the variables that are
considered in this study are DS variables accessed by call processing code (and
where the block executes in ”parallel mode”).

Our studies are performed on existing PLEX code, for which we assume
the shared-memory architecture described in Chapter 3 (and with the CMX-
FD run-time system, Chapter 3.3). The software consists of 1045 blocks; 34 of
those are executed in ”parallel mode” whereas the remaining blocks are allo-
cated to different threads. A total of four blocks have been examined. Common
for these blocks is that their (fraction of the) execution time is known to be high
compared with other blocks. Each examined block contains a number of sig-
nals that are known to be executed significantly more frequently than other
signals in each respective block. We call these “HF-signals” (High Frequency
Signals). For every DS variable that are read from, or written to, by such a
HF signal, we have examined the usage of this variable in every other signal
in that block in order to find out which signals that may possibly be in conflict
with these HF-signals. Table 5.2 summarizes the characteristics of each exam-
ined block: type of block, fraction of execution time, as well as the number
examined signals, and variables.

The code has been inspected manually, and the reason for not trying to
automate the process was that we believed that manual inspection also would
increase our general knowledge on how the language is used, in “reality”, i.e.,
it would be ”possible to “see” the semantics of the program” [10].

Block Type HF Examined
signals

Examined
variables

CHVIEW Middleware 6 70 of 92 26
LAD OS 2 8 of 28 88
MFM OS 3 26 of 75 53
MSCCO Application 2 68 of 75 16

Table 5.2: The examined blocks.



5.2 Examining the Code 59

As we pointed out in Chapter 2.3, the persistent data are divided into Files
and Common variables, where Files are arrays of records, and Common vari-
ables in most cases are ”scalar” variables. For Files, we make the following
observation:

a conflict takes place through a file only when the same individual variable,
in the same record, is accessed simultaneously. For a file of size n the probabil-
ity of two accesses going to the same record is 1/n, if the accesses are random,
independent, and equally distributed. Files in PLEX are usually used to hold
subscriber data and/or data generated during a telephone call [10]. The index
of an access thus usually depends on externally supplied data, like a subscriber
number, which should be quite random under normal circumstances.

Based on the above, we believe that conflicts through Files tend to be rare.
As a starting point we therefore make the following approximation: conflicts
caused by simultaneous access to the same file does not occur! This is of
course an underestimation of the actual number of conflicts. The usage of the
common variables in each examined block is shown in Table C.1 (CHVIEW),
Table C.4 (LAD), Table C.6 (MFM), and Table C.8 (MSCCO). The conflict
matrixes derived from the above tables are found in Table C.11 (CHVIEW),
Table C.16 (LAD), Table C.19 (MFM), and Table C.22 (MSCCO). Applying
the ’w-optimization’ described in the previous section on the above conflict
matrixes result in Table C.12 (CHVIEW), and Table C.17 (LAD). For the ma-
trixes in Table C.19 and Table C.22 no improvement is achieved. This is due
to that several signals share not only one, but several variables that are used for
communication, e.g., ”the current state of the system is X”.

The results so far is summarized in Table 5.3.
On the other hand, by regarding Files from the other extreme, i.e., by con-

sidering every simultaneous access as a potential conflict, we achieve a safe
upper bound on the number of conflicts. The usage of files in each block is
shown in Table C.2 (CHVIEW), Table C.5 (LAD), Table C.7 (MFM), and Ta-
ble C.9 (MSCCO). The corresponding conflict matrixes is shown Table C.13
(CHVIEW), Table C.18 (LAD), Table C.20 (MFM), and Table C.23 (MSCCO).
The safe upper bound is achieved by combining Table C.12 and Table C.13 into
Table C.14 (CHVIEW), Table C.17 and Table C.18 into Table C.181 (LAD),
Table C.19 and Table C.20 into Table C.21 (MFM), and Table C.22 and Table
C.23 into Table C.24 (MSCCO). Adding the upper bounds to Table 5.3 gives
us Table 5.4.

Coming this far, the question is whether or not we can tighten the derived

1The combination of Table C.17 and Table C.18 is identical with Table C.18 since the remaining
conflicts in the former are already captured in the latter.



60 Chapter 5. Case Study: Examining Potential Memory Conflicts

Block Initial \w
approx.

CHVIEW 10.78% 10.74%
LAD 47.22% 8.33%
MFM 64.67% 64.67%
MSCCO 55.46% 55.46%

Table 5.3: A first summary of the (relative) number of possible conflicts, be-
tween the observed signals. Column 2 shows our initial approximation where
we assume that conflicts due to simultaneous access to the same file does not
occur. In Column 3 the ’w-optimization’ (working on a local copy of a vari-
able) is applied.

Block Initial \w Upper
approx. bound

CHVIEW 10.78% 10.74% 72.56%
LAD 47.22% 8.33% 33.33%
MFM 64.67% 64.67% 75.78%
MSCCO 55.46% 55.46% 90.96%

Table 5.4: Adding the upper bound of the possible number of conflicts (column
4) to the figures from Table 5.3.



5.2 Examining the Code 61

upper bounds. Earlier in this section we said that records in a file are used
to hold subscriber data and/or data generated during a telephone call. But to
prevent arbitrary accesses to a record, an instance variable (the ’state’) indicates
whether or not the record is currently used.

• To SEIZE a record is the operation of changing the state of a record from
IDLE to BUSY, where IDLE means "not currently used by any job", and
BUSY "currently used to hold data".

Further on, we also know (from [10]) that files (and their records) can be
divided into different ”sub-classes”. But before we look into these sub-classes,
we need to cover the concept of ”Forlopps” introduced in [10].

In Chapter 2.2, we introduced the notions of jobs, and job-trees (the set of
jobs originating from the same external signal);

• a Forlopp is the set of one, or more, related job-trees [10].

i.e., a set of job-trees that co-operate to establish, and carry out, a telephone
call. Fig. 5.2 - 5.4 (all2 from [10]) illustrate the concepts.

Having covered the Forlopp-concept, we return to the discussion on files/records3,
and start dividing the files into the following classes:

Forlopp unique: a Forlopp unique record is a communication channel with its
liveness limited to the boundary of the currently executed Forlopp. The
communication channel is not live when entering or exiting the Forlopp,
and the pointer value addressing the record is solely used by the Forlopp
that has seized the record, Definition 10.2 in [10]. Since the jobs in
the job-trees, as well as the job-trees in the Forlopp, are sequentially
executed, the only kind of conflict that can possibly occur in a Forlopp
unique record, is if two different Forlopps simultaneously SEIZE a new
record for future use. This implies that if we can classify a file as Forlopp
unique, we can be sure that conflicts in the corresponding records can
never occur as long as the SEIZE operation is protected!

Forlopp shared: similar to the Forlopp unique file, records in a ”Forlopp
shared” file is only used inside a Forlopp. But unlike the previous case
the records are used for communication between different Forlopps which
means that conflicts might occur in these records even if the SEIZE op-
eration is secured.

2Fig. 5.2 is originally from [18].
3In the following, we will sometimes use the terms files, and records interchangeably



62 Chapter 5. Case Study: Examining Potential Memory Conflicts

Hook Off A Hook On A

Dialing

Hook Off B Hook On A

Hook On B

Idle subscribers

Silent BDial tone for A

Ring signal for BRing tone for A

A in speech with B

. .

Figure 5.2: A Petri-Net inspired representation of a Forlopp.



5.2 Examining the Code 63

Hook Off A Hook On A

Dialing

Dial tone for A

Job tree

Idle subscribers

Figure 5.3: Showing one of the Job-trees in the Forlopp from Fig. 5.2.



64 Chapter 5. Case Study: Examining Potential Memory Conflicts

Forlopp

Job-tree

Job

Job

Job-tree

Job

Job

Figure 5.4: The relation between jobs, job-trees, and forlopps.

Shared: a record used for communication between an arbitrary number of jobs
not part of a Forlopp. It might also be the case that uses of the record
rely on sequential execution, e.g., by using a constant value as a pointer
value. Finally, whenever we safely can’t determine any of the other two
cases (Forlopp unique/shared), the record must be regarded as shared.
Simultaneous access to this file type must always be treated as a potential
conflict!

Examining the usage of the files leads us to Table C.10 where each file is clas-
sified according to the above division. Notable is that we actually can classify
18 of 21 files as Forlopp unique, which means that if different signals are pre-
vented from executing the SEIZE operation concurrently, there would be no
conflicts in the 18 files! The SEIZE operation itself is a quite small piece of
code, usually written in one of the following two cases

pointer = Commonvar; Commonvar = pointer : next

FOR FIRST pointer FROM expression WHERE STATE = IDLE
DO STATE = BUSY

Moreover, the SEIZE operation is not seldom placed in a sub-routine since
many signals may perform the same operation. This means that protecting the
SEIZE operation is a question of ensuring exclusive access to the sub-routines
in question! An idea that has been discussed with our partners at Ericsson is to



5.2 Examining the Code 65

use the (for PLEX programmers) well known DISABLE/ENABLE construct
in the following way:

DISABLE PARALLEL
seize operation
ENABLE PARALLEL

The DISABLE/ENABLE construct is today used by code of lower priority to
prevent interference from higher prioritized code4 like in the following code
snippet (and we refer to [9] for further information on the DISABLE/ENABLE
construct).

DISABLE INTERRUPT
low prioritized code accessing shared data
ENABLE INTERRUPT

Now, if we assume that the SEIZE operations in each block is protected,
not only can we safely say that potential conflicts in 18 of the 21 files are
eliminated, but for 2 of the examined 4 blocks we also manage to remove all
the remaining conflicts in the common variables! This is due to the fact that
these variables are (1) only used in SEIZE operations, or (2) only accessed in
the sub-routines that performs the SEIZE operations!

Based on the above assumption and discussion, as well as on our earlier
examination of the common variables, we conclude our study by noting that in
block CHVIEW, we only need to consider the potential conflicts in Table C.3.
All potential conflicts in the remaining files, as well as in the common vari-
ables, are removed under the above assumption. For block LAD we achieve
even better results; all remaining conflicts are removed since all files are For-
lopp unique, and the remaining common variables are used in SEIZE oper-
ations or will be protected if the SEIZE operations are protected. For block
MFM, no file conflicts can be removed since all files are potentially shared.
This means that the previous derived upper bound is our final result for the
block. In block MSCCO, all considered files are classified as Forlopp unique
which means, opposite to MFM, that our initial approximation is the final result
for this block (since no conflicts in the common variables can be removed).

4We recall from Chapter 2.2 that different jobs execute on different levels of priority, and that
jobs of higher priority normally are allowed to interrupt a job of lower priority.



66 Chapter 5. Case Study: Examining Potential Memory Conflicts

Our final figures on the possible number of shared-memory conflicts are as
in Table 5.5, and the new conflict matrix for block CHVIEW is shown in Table
C.15.

Block Initial \w Upper Protected
approx. bound SEIZE

CHVIEW 10.78% 10.74% 72.56% 16.30%
LAD 47.22% 8.33% 33.33% 0%
MFM 64.67% 64.67% 75.78% 75.78%
MSCCO 55.46% 55.46% 90.96% 55.46%

Table 5.5: Our final results of the potential shared-memory conflicts in
the examined blocks. Our initial approximation, with and without the ’w-
optimization’ applied is visible in column 2, and 3 respectively. The upper
bound that was later derived is shown in column 4. Column 5 captures the
result when we assume a protected SEIZE operation, i.e., an atomic section
solution. Notable is that the results for the LAD block is better in the last col-
umn than in our initial approximation. The reason is that the variables causing
the remaining conflicts in column 3 are used in the SEIZE operations that we
have assumed are sequentially executed.



Chapter 6

Related Work

Since this thesis basically consists of two main parts; an operational seman-
tics for Core PLEX, Chapter 4, and a case study of potential shared memory
conflicts, Chapter 5, we have chosen to divide this chapter into two sections.
Section 6.1 relates to the material in Chapter 4, whereas Section 6.2 relates to
Chapter 5.

6.1 Semantics

PLEX is used in the telecom domain, which has particular demands (concur-
rency, extreme reliability and availability, soft real-time requirements, etc.). In
this domain a number of specialized programming and specification languages
are used, which have been formalized with different techniques.

CHILL (the CCITT High Level Language) is an object-oriented language
with support for concurrency [19, 20]. It was developed within a denotational
framework called the Vienna Development Method (VDM) [21, 22], which is
a specification method, that goes from abstract notation to formal specification.

The concurrent and functional language ERLANG, developed by Ericsson,
and used to program the AXD switching system [23], has been specified by a
structural operational semantics as part of a larger framework for formal rea-
soning about ERLANG programs [24]. ERLANG is parallel by design, and an
experimental, multithreaded ERLANG implementation exists on which ER-
LANG programs can be directly executed without any modification [25]. A
distributed version, in which message reordering and disconnecting nodes can

67



68 Chapter 6. Related Work

be expressed, is presented in [26].
Estelle, LOTOS, and SDL are specification languages proposed by, and

used in, the telecom industry [27]. The languages are used to specify the
behavior within, and between, different processes/components, and they range
from a graphical, flow chart-based representation (SDL), to a more abstract,
process algebraic style (LOTOS). The semantics of the latest version of SDL,
SDL-2000, is based on abstract state machines [28], whereas the semantics for
both Estelle, and LOTOS, is modeled by transition systems where the meaning
is given by their computations [29, 30].

PLEX is an event-based asynchronous language. There are several event-
based languages with a synchronous communication paradigm, like for in-
stance SIGNAL [31]. However, their synchronous nature make them quite
different from PLEX, they are in general more declarative in nature, and their
existing semantics have a quite different style.

PLEX has unstructured jumps. This makes it harder to define a structural
operational semantics for PLEX, and compositional reasoning becomes harder.
However, Saabas and Uustalu [32] have recently presented a compositional,
natural semantics for a language with jumps. This kind of semantics could
probably be used for PLEX as well.

6.2 Concurrency Control

Due to its event-based execution model, it may seem natural to relate the pos-
sibility of parallel execution of existing PLEX programs to other event-based
systems, and especially to Rational Rose RT-models since PLEX and Rose
have a similar asynchronous communication paradigm with events encoded as
signals [33]. However, the few papers that we are aware of in the event-based
domain, [34, 35] and [36], are all concerned with optimizing performance on
a single-processor architecture. Since different modeling languages such as
UML and Rose are basically used in the OO domain, the lack of literature
might be caused by known difficulties to parallelize OO programs (inheritance,
late binding, encapsulation and reusability) [37].

As seen in previous chapters, 1 and 2.2, we have related the execution of
a job to the execution of a transaction, and we will therefore review relevant
works in the field of parallel databases. First of all we note that there are
two architectural “extremes”; the shared-nothing (SN) and the shared-memory
(SM) architectures [38, 39, 40]. The only way two processors communicate
in the SN-architecture is by message passing, and hence transactions can not



6.2 Concurrency Control 69

interfere with each other. The SM-architectures resolve the problem with in-
terfering transactions by locking schemes [41]. Due to better scaling and non-
interference between transactions the SN-architecture has been considered su-
perior to the SM-architecture. However, the emerge of multi core architectures
will most likely force the database community to revisit the SM-architecture
[42]. The latter work explores a parallel database implemented on a Cray
MTA-2. This architecture provides hardware primitives for locking of single
words of memory, and hashes the physical address space to distribute memory
references.

The current approach to keep the system consistent is the coarse locking
scheme (lock an entire block) which was described in Chapter 3. The static
analysis described in the previous section is able to safely state that some of the
potential conflicts never occur, which implies that the current locking scheme
is unnecessarily conservative. However, potential conflicts that we can’t re-
solve still need to be handled dynamically. An alternative approach might be
non-blocking synchronization, which could be either lock-free or wait-free.
The difference between these approaches is that in the lock-free approach, at
least one operation is guaranteed to finish, whereas in the wait-free approach,
each operation is guaranteed to finish within some time t. The wait-free ap-
proach will however impose a larger overhead due to helping scheme involved.
The synchronization operation is in both cases implemented through standard
hardware primitives. Examples of implementations, and algorithms, for non-
blocking synchronization can be found in [43, 44, 45].

Another solution that may seem attractive (especially since we, in Chapter
1, related PLEX jobs to transactions) is Transactional Memory (TM). In this
approach, operations on the shared data are seen as transactions that are either
committed or aborted. The approach was originally presented as a hardware
approach [46], but due to the lack of support for TM in existing hardware, [47]
proposed a software based approach. Although there is currently much focus
on TM, we are not aware of any existing, commercial, hardware that supports
TM. Nor are we aware of any efficient (with a minimum of overhead) software
based implementations.





Chapter 7

Conclusions

With the emerge of multi-core computers, existing sequential software face a
major challenge. If not parallelized, the applications will probably face de-
creased performance since the individual cores become simpler (with lower
clock frequency).

In this thesis, we have studied the event-based language PLEX, used to pro-
gram the AXE telephone exchange system from Ericsson. Currently, there are
approximately 20 Mlines of PLEX code in the AXE system. The software con-
sists of independent activities (jobs), which communicate through shared data
areas. Due to the large amount of code, manual rewriting of the entire code
base is out of question. Thus, there is a need for automatic (or semi-automatic)
methods to migrate the code to parallel architectures with a minimum of rewrit-
ing.

Our approach to migrating PLEX to a parallel architecture is based on quite
standard program analysis. The goal of this analysis is to classify parallel exe-
cution as safe (or unsafe). For code that is classified as unsafe, program trans-
formations are planned. However, due to the high availability demands that
exists for telecom systems, the analysis (as well as the transformations) need
to be based on a formal semantics for PLEX. This is because we need to ensure
that the proposed analysis and transformations are safe.

This thesis takes the first step towards migrating PLEX to a parallel archi-
tecture, in that it provides the necessary formal basis for the analysis and the
transformations by specifying an operational semantics for PLEX. We model

71



72 Chapter 7. Conclusions

the execution of PLEX in the current, single-processor, architecture, as well
as on a parallel implementation. The (hypothetical) parallel implementation
consist of a shared-memory architecture equipped with a run-time system that
executes PLEX as it is. In both cases, the operational semantics is given in
terms of state transitions.

The semantics shows a straight-forward operational semantics for an im-
perative, non-toy like, language, with asynchronous communication through
queues. The modeling of PLEX also shows an application of formal semantics
that has considerable practical interest.

A second step is the case study of the potential memory conflicts that may
arise when the existing code is allowed to be executed in parallel. Initially,
we had to assume the worst case scenario; i.e., a conflict rate close to 100%
between the examined signals. However, we have shown that simple static
methods are sufficient to resolve many of the potential conflicts. As shown, we
managed to approximate the figures to be in the range 11-65%. We then derived
a safe upper bound on the number of potential conflicts. These figures were
found to be in the range 33-91%. Under the assumption that some identified,
critical, operations are prevented from parallel execution, we showed that it is
possible to tighten the upper bounds to figures in the range 0-76%.

7.1 Future Work

The continuation of our work includes a formal specification, as well as an
implementation, of the program analysis discussed in Chapter 1.2. As a basis
for the analysis, we will take our manual inspection of the code from Chapter
5. For the proposed transformations/optimizations in Chapter 5.1, we have so
far used an informal reasoning for correctness. A more formal reasoning for
these, as well as for other transformations, is also on the agenda.

To maintain consistency of the shared data in the case the static analysis
fails to resolve a conflict, a dynamic solution is required. We have so far com-
pared our static analysis with a dynamic approach, where each shared data
area is protected by a lock. However, we have seen that such a “mutual ex-
clusion” approach is too conservative since two jobs accessing the same block
may never touch the same data. As an alternative to this coarse grained lock-
ing scheme, we have sketched on an ’Atomic Section’ solution. This may be
viewed as a pessimistic, but more fine grained approach, than the current. An-
other approach is non-blocking synchronization as discussed in Chapter 6.2.



7.1 Future Work 73

This will probably involve a re-design of some existing data structures in order
to make them suitable for concurrent access.

Regardless of the approach(es) chosen, evaluation with respect to expected
increased performance is planned as the final step of the continuation of our
work.

Finally, in Chapter 6.2 we discarded Transactional Memory as a solution
(even though there is a clear relation between PLEX jobs and transactions) due
to the lack of support for TM in existing hardware. A software TM solution
was also rejected since we are not aware of any efficient algorithms. However,
if the situation would change in a near future, we might reconsider TM as a
dynamic solution.





Bibliography

[1] R. Gupta, S. Pande, K. Psarris, and V. Sarkar. Compilation Techniques
for Parallel Systems. Parallel Computing, 25(13-14):1741–1783, 1999.

[2] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations for
high-performance computing. ACM Computing Surveys, 26(4):345–420,
1994.

[3] U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua. Automatic
program parallelization. Proceedings of the IEEE, 81(2):211–243, 1993.

[4] D. A. Padua and M. J. Wolfe. Advanced compiler optimizations for su-
percomputers. Communications of the ACM, 29(12):1184–1201, 1986.

[5] Jesse Z. Fang. Parallel programming environment: a key to translating
tera-scale platforms into a big success. In PPoPP ’07: Proceedings of the
12th ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 1–1, New York, NY, USA, 2007. ACM.

[6] Herb Sutter and James Larus. Software and the concurrency revolution.
ACM Queue, 3(7):54–62, September 2005.

[7] Andres S Tanenbaum. Distributed Operating Systems. Prentice Hall In-
ternational Editions, 1995.

[8] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis,
2nd Edition. Springer, 2005.

[9] J. Erikson and B. Lindell. The Execution Model of the APZ/PLEX - An
Informal Description. Technical report, Mälardalen University, 2002.

75



76 Bibliography

[10] B. Lindell. Analysis of reentrancy and problems of data interference in
the parallel execution of a multi processor AXE-APZ system. Master’s
thesis, Mälardalen University, 2003.

[11] O. Kjöller. CMX-FD Configuration. Internal Technical Report, Ericsson
AB, 2004.

[12] H. R. Nielson and F. Nielson. Semantics with Applications: A Formal
Introduction. John Wiley & Sons, 1992.

[13] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–580, 1969.

[14] J. Erikson. A Structural Operational Semantics for PLEX. Technical Re-
port ISSN 1404-3041 ISRN MDH-MRTC-166/2004-1-SE, Mälardalen
University, 2003.

[15] A. Arnstrom, C. Grosz, and A. Guillemot. GRETA: a tool concept for
validation and verification of signal based systems (e.g. written in PLEX).
Master’s thesis, Mälardalen University, 1999.

[16] A. V. Aho, R. Sethi, and J. D. Ulman. Compilers Principles, Techniques
and Tools. Addison-Welsey Publishing Company, 1986.

[17] G. Winskel. The Formal Semantics of Programming Languages: An In-
troduction. MIT Press, 1993.

[18] Peter Funk and Janet Wennersten. Asynchronous signal paradigm and
AI for soft real time systems. Technical report, Mälardalen University,
March 2000.

[19] ITU-T. CHILL: The ITU-T Programming Language, 11 1999. Interna-
tional Telecommunication Union, Geneva, (Recommendation Z.200).

[20] Jürgen F. H. Winkler. CHILL 2000. Telektronikk, 96(4):70–77, 2000.

[21] ITU-T. CHILL: Formal Definition, 1982. International Telecommunica-
tion Union, Volume 1, Part 1, 2, 3.

[22] D. Bjørner and C. B. Jones. Formal Specification and Software Develop-
ment. Prentice-Hall, 1982.



Bibliography 77

[23] Bjarne Däcker. Concurrent Functional Programming for Telecommu-
nications: A Case Study of Technology Introduction. Licentiate thesis,
Royal Institute of Technology, KTH, Sweden, 2000.

[24] L. Fredlund. A Framework for Reasoning About ERLANG Code. PhD
thesis, Royal Institute of Technology, KTH, Sweden, 2001.

[25] Pekka Hedqvist. A parallel and multithreaded ERLANG implementation.
Master’s thesis, Computing Science Department, Uppsala University, Up-
psala, June 1998.

[26] Hans Svensson and Lars-Åke Fredlund. A more accurate semantics for
distributed erlang. In Erlang ’07: Proceedings of the 2007 SIGPLAN
workshop on Erlang Workshop, pages 43–54, New York, NY, USA, 2007.
ACM.

[27] M. A. Ardis. Formal Methods for Telecommunication System Require-
ments: A Survey of Standardized Languages. Annals of Software Engi-
neering, 3:157–187, 1997.

[28] U. Glässer, R. Gotzhein, and A. Prinz. The Formal Semantics of SDL-
2000: Status and Perspectives. Computer Networks - The International
Journal of Computer and Telecommunications Networking, 3(42):343–
358, June 2003.

[29] J. Thees and R. Gotzhein. A Formal Syntax and a Formal Semantics
for Open Estelle. Technical Report 292/97, University of Kaiserslautern,
1997.

[30] M. Calder and C. Shankland. A Symbolic Semantics and Bisimulation
for Full LOTOS. In Proceedings of the 21st International Conferenence
on Formal Techniquess for Networked and Distributed Systems, pages
185–200. IFIP, 2001.

[31] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Syn-
chronous programming with events and relations: the SIGNAL language
and its semantics. Science of Computer Programming, 16(2):103–149,
September 1991.

[32] Ando Saabas and Tarmo Uustalu. A compositional natural semantics and
hoare logic for low-level languages. In Proc. 2nd Workshop on Structural
Operational Semantics, SOS 2005, July 2005.



78 Bibliography

[33] Rational. Modeling Language Guide - Rational Rose Realtime, 2002.

[34] A. Marburger and D. Herzberg. E-CARES Research Project: Understand-
ing Complex Legacy Telecommunication Systems. In Fifth European
Conference on Software Maintenance and Reengineering, pages 139 –
147, 2001.

[35] Christof Mosler. E-CARES Project: Reengineering of PLEX Systems.
Softwaretechnik-Trends, 26(2):59–60, 5 2006.

[36] M. Rajagopalan, S. K. Debray, M. A. Hiltunen, and R. D. Schlichting.
Profile-directed optimization of event-based programs. In Proceedings of
the ACM SIGPLAN 2002 Conference on Programming language design
and implementation PLDI ’02, pages 106 – 116, 2002.

[37] S. Kumar. Issues in parallelizing object-oriented programs. In Proceed-
ings of the 1995 ICPP Workshop on Challenges for Parallel Processing,
pages 64–71, 1995.

[38] David J. DeWitt and Jim Gray. Parallel database systems: the future of
database processing or a passing fad? SIGMOD Rec., 19(4):104–112,
1990.

[39] M. Tamer Özsu and Patrick Valduriez. Distributed and parallel database
systems. ACM Comput. Surv., 28(1):125–128, 1996.

[40] Ameet S. Talwadker. Survey of performance issues in parallel database
systems. J. Comput. Small Coll., 18(6):5–9, 2003.

[41] Paul Watson and George Catlow. Architecture of the ICL goldrush
megaserver. In BNCOD 13: Proceedings of the 13th British National
Conference on Databases, pages 249–262, London, UK, 1995. Springer-
Verlag.

[42] John Cieslewicz, Jonathan Berry, Bruce Hendrickson, and Kenneth A.
Ross. Realizing parallelism in database operations: insights from a mas-
sively multithreaded architecture. In DaMoN ’06: Proceedings of the 2nd
international workshop on Data management on new hardware, page 4,
New York, NY, USA, 2006. ACM Press.

[43] Yi Zhang. Non-Blocking Synchronization: Algorithms and Performance
Evaluation. PhD thesis, Chalmers University of Technology, 2003.



Bibliography 79

[44] Håkan Sundell. Efficient and Practical Non-Blocking Data Structures.
PhD thesis, Chalmers University of Technology, 2004.

[45] Phuong Ha. Reactive Concurrent Data Structures and Algorithms for
Synchronization. PhD thesis, Chalmers University of Technology, 2006.

[46] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural sup-
port for lock-free data structures. In Proceedings of the Twentieth Annual
International Symposium on Computer Architecture, 1993.

[47] Nir Shavit and Dan Touitou. Software transactional memory. In PODC
’95: Proceedings of the fourteenth annual ACM symposium on Principles
of distributed computing, pages 204–213, New York, NY, USA, 1995.
ACM Press.



Chapter A. The Sequential Semantics for Core PLEX

Appendix A

The Sequential Semantics for
Core PLEX

This chapter summarizes the sequential semantics for Core PLEX that was
given in Chapter 4.3.

[ass] 〈VSC, JBA, JBB, σ, δ〉 x:=a−−−→
〈succ(VSC), JBA, JBB, σ[x 7→ A[[a]]σ], δ〉

[condtt] 〈VSC, JBA, JBB, σ, δ〉 IF b THEN S1 ELSE S2−−−−−−−−−−−−−→
〈succT (VSC), JBA, JBB, σ, δ〉

if B[[b]]σ = tt

[condff ] 〈VSC, JBA, JBB, σ, δ〉 IF b THEN S1 ELSE S2−−−−−−−−−−−−−→
〈succF (VSC), JBA, JBB, σ, δ〉

if B[[b]]σ = ff

[jmp] 〈VSC, JBA, JBB, σ, δ〉 GOTO label−−−−−−→
〈label, JBA, JBB, σ, δ〉

[senddir] 〈VSC, JBA, JBB, σ, δ〉 SEND signal−−−−−−−→
〈signal, JBA, JBB, σ|RM 7→ ⊥, δ〉

if signal ∈ Dir

80



81

[senddir] 〈VSC, JBA, JBB, σ, δ〉 SEND signal WITH data−−−−−−−−−−−−−→
〈signal, JBA, JBB, σ|RM 7→ data, δ〉

if signal ∈ Dir

[sendbufLevA] 〈VSC, JBA, JBB, σ, δ〉 SEND signal−−−−−−−→
〈succ(VSC), JBA : (signal,⊥), JBB, σ, δ〉

if signal ∈ Buf , signal ∈ LevA

[sendbufLevA] 〈VSC, JBA, JBB, σ, δ〉 SEND signal WITH data−−−−−−−−−−−−−→
〈succ(VSC), JBA : (signal, data), JBB, σ, δ〉

if signal ∈ Buf , signal ∈ LevA

[sendbufLevB ] 〈VSC, JBA, JBB, σ, δ〉 SEND signal−−−−−−−→
〈succ(VSC), JBA, JBB : (signal,⊥), σ, δ〉

if signal ∈ Buf , signal ∈ LevB

[sendbufLevB ] 〈VSC, JBA, JBB, σ, δ〉 SEND signal WITH data−−−−−−−−−−−−−→
〈succ(VSC), JBA, JBB : (signal, data), σ, δ〉

if signal ∈ Buf , signal ∈ LevB

[sendcombfw ] 〈VSC, JBA, JBB, σ, δ〉 SEND cfsig WAIT FOR cbsig IN label−−−−−−−−−−−−−−−−−−−−−→
〈cfsig , JBA, JBB, σ|RMi

7→ ⊥, label : δ〉

[sendcombfw ] 〈VSC, JBA, JBB, σ, δ〉 SEND cfsig WITH data WAIT FOR cbsig IN label−−−−−−−−−−−−−−−−−−−−−−−−−−−→
〈cfsig , JBA, JBB, σ|RMi 7→ data, label : δ〉

[sendcombbw ] 〈VSC, JBA, , JBB, σ, label : δ〉 RETURN cbsig−−−−−−−−→
〈label, JBA, JBB, σ|RMi 7→ ⊥, δ〉

[sendcombbw ] 〈VSC, JBA, JBB, σ, label : δ〉 RETURN cbsig WITH data−−−−−−−−−−−−−−→
〈label, JBA, JBB, σ|RMi

7→ data, δ〉

[sendlocal] 〈VSC, JBA, JBB, σ, δ〉 TRANSFER signal−−−−−−−−−−→
〈signal, JBA, JBB, σ, δ〉

[sendlocal] 〈VSC, JBA, JBB, σ, δ〉 TRANSFER signal WITH data−−−−−−−−−−−−−−−−→
〈signal, JBA, JBB, σ|RMi

7→ data \ ⊥, δ〉



82 Chapter A. The Sequential Semantics for Core PLEX

[exit] 〈VSC, (signal, data) : JBA, JBB, σ, δ〉 EXIT−−−→
〈signal, JBA, JBB, σ|RM 7→ data, δ〉

[exit] 〈VSC, ⊥, (signal, data) : JBB, σ, δ〉 EXIT−−−→
〈signal, ⊥, JBB, σ|RM 7→ data, δ〉

[ext] 〈VSC, JBA, JBB, σ, δ〉 ε−→
〈VSC, JBA : (signal, data), JBB, σ, δ〉

if signal ∈ Ext, signal ∈ LevA

[ext] 〈VSC, JBA, JBB, σ, δ〉 ε−→
〈VSC, JBA, JBB : (signal, data), σ, δ〉

if signal ∈ Ext, signal ∈ LevB



Appendix B

The Parallel Semantics for
Core PLEX

Whereas Chapter A summarized the sequential semantics for Core PLEX (given
in Chapter 4.3), this chapter summarizes the parallel semantics given in Chap-
ter 4.4.

[ass] 〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
x:=a, i−−−−→

〈succ(VSCi), JBBi, Locksi, Fi, δi, 〈σ[x 7→ A[[a]]σ], σL〉〉

[condtt] 〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
IF b THEN S1 ELSE S2, i−−−−−−−−−−−−−−−→

〈succT (VSCi), JBBi, Locksi, Fi, δi, 〈σ, σL〉〉

if B[[b]]σ = tt

[condff ] 〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
IF b THEN S1 ELSE S2, i−−−−−−−−−−−−−−−→

〈succF (VSCi), JBBi, Locksi, Fi, δi, 〈σ, σL〉〉

if B[[b]]σ = ff

[jmp] 〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
GOTO label, i−−−−−−−−→

〈label, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉

83



84 Chapter B. The Parallel Semantics for Core PLEX

[senddir] 〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
SEND signal, i−−−−−−−−→

〈signal, JBBi, Locksi ∪ {Lγ}, Fi, δi,
〈σ|RMi

7→ ⊥, σL[Lγ 7→ 1]〉〉

if signal ∈ Dir, γ = LB(signal),
(σL(Lγ) = 0 ∨ Lγ ∈ Locksi)

[senddir] 〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
SEND signal WITH data, i−−−−−−−−−−−−−−−→

〈signal, JBBi, Locksi ∪ {Lγ}, Fi, δi,
〈σ|RMi

7→ data, σL[Lγ 7→ 1]〉〉

if signal ∈ Dir, γ = LB(signal),
(σL(Lγ) = 0 ∨ Lγ ∈ Locksi)

[sendbufLevA] 〈s1, . . . , si, . . . , 〈σ, σL〉〉
SEND signal, i−−−−−−−−→ 〈s′1, . . . , s′i, . . . , 〈σ, σL〉〉

where s1 = 〈VSC1, JBA, JBB1, Locks1, F1, δ1〉
si = 〈VSCi, JBBi, Locksi, Fi, δi〉
s′1 = 〈VSC1, JBA : (signal,⊥), JBB1, Locks1,

F1 : [signal], δ1〉
s′i = 〈succ(VSCi), JBBi, Locksi, Fi, δi〉

if signal ∈ Buf , signal ∈ LevA

[sendbufLevA] 〈s1, . . . , si, . . . , 〈σ, σL〉〉
SEND signal WITH data, i−−−−−−−−−−−−−−−→

〈s′1, . . . , s′i, . . . , 〈σ, σL〉〉
where s1 = 〈VSC1, JBA, JBB1, Locks1, F1, δ1〉

si = 〈VSCi, JBBi, Locksi, Fi, δi〉
s′1 = 〈VSC1, JBA : (signal, data), JBB1, Locks1,

F1 : [signal], δ1〉
s′i = 〈succ(VSCi), JBBi, Locksi, Fi, δi〉

if signal ∈ Buf , signal ∈ LevA

[sendbufLevB ] 〈VSCi, JBBi, Locksi, [T ] : Fi, δi, 〈σ, σL〉〉
SEND signal, i−−−−−−−−→

〈succ(VSCi), JBBi : (signal,⊥), Locksi,
[T : signal] : Fi, δi, 〈σ, σL〉〉

if signal ∈ Buf , signal ∈ LevB



85

[sendbufLevB ] 〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
SEND signal WITH data, i−−−−−−−−−−−−−−−→

〈succ(VSCi), JBBi : (signal, data), Locksi,
[T : signal] : Fi, δi, 〈σ, σL〉〉

if signal ∈ Buf , signal ∈ LevB

[sendcombfw ] 〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
SEND cfsig WAIT FOR cbsig IN label, i−−−−−−−−−−−−−−−−−−−−−−→

〈cfsig , JBBi, Locksi ∪ {Lγ}, Fi, label : δi,
〈σ|RMi 7→ ⊥, σL[Lγ 7→ 1]〉〉

if γ = LB(cfsig), (σL(Lγ) = 0 ∨ Lγ ∈ Locksi)

[sendcombfw ] 〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
SEND cfsig WITH data WAIT FOR cbsig IN label, i−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

〈cfsig , JBBi, Locksi ∪ {Lγ}, Fi, label : δi,
〈σ|RMi

7→ data, σL[Lγ 7→ 1]〉〉

if γ = LB(cfsig), (σL(Lγ) = 0 ∨ Lγ ∈ Locksi)

[sendcombbw ] 〈VSCi, JBBi, Locksi, Fi, label : δi, 〈σ, σL〉〉
RETURN cbsig, i−−−−−−−−−→

〈label, JBBi, Locksi, Fi, δi, 〈σ|RMi 7→ ⊥, σL〉〉

[sendcombbw ] 〈VSCi, JBBi, Locksi, Fi, label : δi, 〈σ, σL〉〉
RETURN cbsig WITH data, i−−−−−−−−−−−−−−−→

〈label, JBBi, Locksi, Fi, δi, 〈σ|RMi
7→ data, σL〉〉

[sendlocal] 〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
TRANSFER signal, i−−−−−−−−−−−→

〈signal, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉

[sendlocal] 〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
TRANSFER signal WITH data, i−−−−−−−−−−−−−−−−−−→

〈signal, JBBi, Locksi, Fi, δi, 〈σ|RMi
7→ data \ ⊥, σL〉〉

[sendbufjtree] 〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
SEND signal JOBTREE, i−−−−−−−−−−−−−−→

〈succ(VSCi), JBBi : (signal,⊥), Locksi, Fi : [signal], δi,
〈σ, σL〉〉

if signal ∈ Buf , Receiver(signal) = i



86 Chapter B. The Parallel Semantics for Core PLEX

[sendbufjtree] 〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
SEND signal JOBTREE WITH data, i−−−−−−−−−−−−−−−−−−−−→

〈succ(VSCi), JBBi : (signal, data), Locksi, Fi : [signal], δi,
〈σ, σL〉〉

if signal ∈ Buf , Receiver(signal) = i

[sendbufjtree] 〈. . . , si, sj , . . . , 〈σ, σL〉〉
SEND signal JOBTREE, i−−−−−−−−−−−−−−→

〈. . . , s′i, s′j , . . . , 〈σ, σL〉〉
where si = 〈VSCi, JBBi, Locksi, Fi, δi〉

sj = 〈VSCj , JBBj , Locksj , Fj , δj〉
s′i = 〈succ(VSCi), JBBi, Locksi, Fi, δi〉
s′j = 〈VSCj , JBBj : (signal,⊥), Locksj ,

Fj : [signal], δj〉

if signal ∈ Buf , Receiver(signal) = j 6= i

[sendbufjtree] 〈. . . , si, sj , . . . , 〈σ, σL〉〉
SEND signal JOBTREE WITH data, i−−−−−−−−−−−−−−−−−−−−→

〈. . . , s′i, s′j , . . . , 〈σ, σL〉〉
where si = 〈VSCi, JBBi, Locksi, Fi, δi〉

sj = 〈VSCj , JBBj , Locksj , Fj , δj〉
s′i = 〈succ(VSCi), JBBi, Locksi, Fi, δi〉
s′j = 〈VSCj , JBBj : (signal, data), Locksj ,

Fj : [signal], δj〉

if signal ∈ Buf , Receiver(signal) = j 6= i

[exit] 〈VSCi, JBBi, Locksi, [ ] : Fi, δi, 〈σ, σL〉〉
EXIT, i−−−−→

〈⊥, JBBi, ∅, Fi, δi, 〈σ, σL[Lγ 7→ 0, Lγ ∈ Locksi]〉〉

[exit] 〈VSCi, JBBi, Locksi, [signal : T ] : Fi, δi, 〈σ, σL〉〉
EXIT, i−−−−→

〈⊥, JBBi, ∅, [signal : T ] : Fi, δi,
〈σ, σL[Lγ 7→ 0, Lγ ∈ Locksi]〉〉

if Receiver(signal) = i



87

[exit] 〈. . . , si, sj , . . . , sG〉
EXIT, i−−−−→ 〈. . . , s′i, s′j , . . . , s′G〉

where si = 〈VSCi, JBBi, Locksi, [signal : T ] : Fi, δi〉
sj = 〈VSCj , JBBj , Locksj , Fj , δj〉
sG = 〈σ, σL〉
s′i = 〈⊥, JBBi − {(signal, data) : T }, ∅, Fi, δi〉
s′j = 〈VSCj , JBBj : (signal, data) : T , Locksj ,

Fj : [signal : T ], δj〉
s′G = 〈σ, σL[Lγ 7→ 0, Lγ ∈ Locksi]〉

if Receiver(signal) = j 6= i

[job] 〈⊥, (signal, data) : JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
ε,i−→

〈signal, JBBi, {Lγ}, [T ] : Fi − [signal : T ], δi,
〈σ|RMi

7→ data, σL[Lγ 7→ 1]〉〉

if γ = LB(signal), σL(Lγ) = 0, s1(JBA) = ε

[extLevA] 〈VSC1, JBA, JBB1, Locks1, F1, δ1, 〈σ, σL〉〉
ε,i−→

〈VSC1, JBA : (signal, data), JBB1, Locks1,
F1 : [signal], δ1, 〈σ, σL〉〉

if signal ∈ Ext, signal ∈ LevA

[extLevB ] 〈VSCi, JBBi, Locksi, Fi, δi, 〈σ, σL〉〉
ε,i−→

〈VSCi, JBBi : (signal, data), Locksi,
Fi : [signal], δi, 〈σ, σL〉〉

if signal ∈ Ext, signal ∈ LevB

[global] si−→s′i
〈s1, ... si, ... , sk, sG〉 → 〈s1, ... s′i, ... , sk, sG〉

[global] si−→s′i
〈s1, ... si, ... , sk, sG〉 → 〈s1, ... s′i, ... , sk, s′G〉



Chapter C. The Potential Memory Conflicts

Appendix C

The Potential Memory
Conflicts

The background material, which we refer to in Section 5.2, and from which the
figures in Table 5.3-5.5 is derived, is collected in this section. Table C.1-C.9
shows how the variables in each examined block are used, and from Section
5.1, we repeat our classification of the variables;

⊥ - The variable is never used by the signal in question.
R - Read Only, i.e., the only way the signal is accessing the variable is

in read operations.
W - If the signal accesses the variable, the first access will always be a

write operation.
> - It is not possible to (statically) classify the variable according to the

previous cases.

Table C.10 contains the classification of the files, whereas Table C.11-C.24
contains the conflict matrixes for the different blocks.

When the figures in Table 5.3-5.5 was calculated, it was only necessary to
consider one half in each respective conflict matrix. This is (of course) due
to symmetry; if SignalA may be in conflict with SignalB , then obviously
SignalB may be in conflict with SignalA. However, SignalA may also, in
some situations, be in conflict with itself. This has been included in our figures.

Finally, some of the signals in the tables are marked bold, and italic; these
are the ”high-frequent” signals mentioned in the beginning of Section 5.2.

88



89

Block: CHVIEW

(Middleware)

variables→

signals ↓

C
PU

B
D

A
TA

ID

C
PU

B
D

A
TAVA

L
U

E

C
PU

B
2D

A
TA

ID

C
PU

B
2D

A
TAVA

L
U

E

C
G

L
O

B
A

L
SU

B
IU

A

C
G

L
O

B
A

L
SU

B
SR

E
F

C
STA

R
T

ID
L

E
L

IST
L

O
G

PR
T

C
STA

R
T

ID
L

E
L

IST
V

IE
W

C
STA

R
T

ID
L

E
L

IST
L

O
G

H
D

R

C
SE

T
M

A
SK

C
G

L
O

B
A

L
SU

B
PC

D
I

C
T

M
Z

SU
PPO

R
T

E
D

C
A

U
TO

SIZ
E

A
LT

SU
PPO

R
T

C
O

W
N

R
E

F

C
STO

PID
L

E
L

IST
L

O
G

PR
T

C
PR

E
PN

U
M

L
O

G
PA

R
T

C
STO

PID
L

E
L

IST
V

IE
W

C
STO

PID
L

E
L

IST
L

O
G

H
D

R

C
PU

B
L

IC
D

E
FA

U
LT

S

C
C

L
E

A
R

SU
B

SC
R

WRITEPUBLIC W W > > R R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

READPUBLIC W W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

READLOG ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

CREGENVIEW ⊥ ⊥ ⊥ ⊥ ⊥ R > > > R R R R R W ⊥ W W R R

WRITELOGEND ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ R R > R ⊥ ⊥ ⊥ ⊥

CREATEVIEW ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > > > R ⊥ R R R W ⊥ W W ⊥ ⊥

INITVIEW ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > W W R ⊥ ⊥ R R > R > > ⊥ ⊥

OPENVIEWCON ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥ > R ⊥ ⊥ R R W ⊥ ⊥ W ⊥ ⊥

WRITEPUBEND ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ R R > R ⊥ ⊥ ⊥ ⊥

WRITELOG ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ R R > R ⊥ ⊥ ⊥ ⊥

RESERVEVIEW ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > > ⊥ ⊥ R R R ⊥ ⊥ W W ⊥ ⊥

STOREFEP ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

OPENSESSION1R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ R ⊥ ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

OPENSESSION1REJ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W W W R ⊥ ⊥ ⊥ R > R > > ⊥ ⊥

INITOUTPUT ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W W W R ⊥ ⊥ ⊥ R > R > > ⊥ ⊥

CONTINUEB ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ R ⊥ ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

REQRESKEY ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

STARTCHOUTPUT ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ R R R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

PARTOUTBREAK ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

FOAMTRACE ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

RELVIEWCON ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W W W ⊥ ⊥ ⊥ ⊥ ⊥ > R > > ⊥ ⊥

CANLOCPUBLIC1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > R > ⊥ ⊥ ⊥

UNDOWRITELOG ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > R ⊥ ⊥ ⊥ ⊥

CLEARLOG ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > R ⊥ ⊥ ⊥ ⊥

PARTOUTREQ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W > > ⊥ ⊥ ⊥ ⊥ R > R > > ⊥ ⊥

OUTPUTVAREQR ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > > ⊥ ⊥ ⊥ ⊥ R ⊥ ⊥ W W ⊥ ⊥

DISASSOCVIEW ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W W W ⊥ ⊥ ⊥ ⊥ ⊥ > R > > ⊥ ⊥

DELAYDISASSOC ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W W W ⊥ ⊥ ⊥ ⊥ ⊥ > R > > ⊥ ⊥

SPLITVA ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W W W ⊥ ⊥ ⊥ ⊥ ⊥ > R > > ⊥ ⊥

DELAYSPLITVA ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W W W ⊥ ⊥ ⊥ ⊥ ⊥ > R > > ⊥ ⊥

NOOUTPUTR ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W W W ⊥ ⊥ ⊥ ⊥ R > R > > ⊥ ⊥

CHARGRESULTSR ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W W W ⊥ ⊥ ⊥ ⊥ ⊥ > R > > ⊥ ⊥

PARTOUTREADYR ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W W W ⊥ ⊥ ⊥ ⊥ ⊥ > R > > ⊥ ⊥

SETPRECONGFEP ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

PRECONGFEP ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

CLEARPRECONGFEP ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

PRECONGFEPCLRD ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

OUTPUTVAREQREJ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

OUTPUTFEPR ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

OUTPUTFEPREJ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

CLOSESESSION1R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

CLEARFULLCONG ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

GETSTRUCTOT ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

SWITCHFEPS ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

FEPSWITCHEDR ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Table C.1: CHVIEW - usage of common variables.



90 Chapter C. The Potential Memory Conflicts

Block: CHVIEW

(Middleware)

Files→

signals ↓

V
IE

W
FIL

E

L
O

G
H

E
A

D
E

R

L
O

G
PA

R
T

PU
B

L
IC

D
A

TA

SE
SSIO

N

SA
E

C
N

T
R

E
C

O
R

D Files→

signals ↓

V
IE

W
FIL

E

L
O

G
H

E
A

D
E

R

L
O

G
PA

R
T

PU
B

L
IC

D
A

TA

SE
SSIO

N

SA
E

C
N

T
R

E
C

O
R

D

WRITEPUBLIC R ⊥ ⊥ W ⊥ ⊥ OUTPUTFEPR > > > ⊥ > >

READPUBLIC R ⊥ ⊥ R ⊥ ⊥ OUTPUTFEPREJ > > > ⊥ > >

READLOG ⊥ R R ⊥ W ⊥ CLOSESESSION1R > > > ⊥ > >

CREGENVIEW > > > W ⊥ > CLEARFULLCONG > > > ⊥ > >

WRITELOGEND > W > ⊥ ⊥ > GETSTRUCTOT > R R ⊥ W ⊥

CREATEVIEW > > > ⊥ ⊥ > CHVIEWCONTRACE > > ⊥ ⊥ ⊥ ⊥

INITVIEW W W > ⊥ ⊥ > CHVIEWCONCLEAR > W ⊥ ⊥ ⊥ ⊥

OPENVIEWCON > > > ⊥ ⊥ > RVIEWSTRUC W ⊥ ⊥ ⊥ ⊥ ⊥

WRITEPUBEND R ⊥ > > ⊥ > STORERESKEY W ⊥ ⊥ ⊥ ⊥ ⊥

WRITELOG > W > ⊥ ⊥ > SUBLOCPUBCDT R ⊥ ⊥ > ⊥ ⊥

RESERVEVIEW > > ⊥ ⊥ ⊥ > VIEWSTATUS W ⊥ ⊥ ⊥ ⊥ ⊥

STOREFEP > W ⊥ ⊥ ⊥ ⊥ VIEWSERVICE W ⊥ ⊥ ⊥ ⊥ ⊥

OPENSESSION1R > > > ⊥ > > VIEWSPEC W ⊥ ⊥ ⊥ ⊥ ⊥

OPENSESSION1REJ > > > ⊥ > > UPDATEEVENT W ⊥ ⊥ ⊥ ⊥ ⊥

INITOUTPUT > > > ⊥ > > READVABSTIME W ⊥ ⊥ ⊥ ⊥ ⊥

CONTINUEB > > > ⊥ > > ASSOCVIEW > R ⊥ ⊥ ⊥ ⊥

STARTCHOUTPUT > > ⊥ ⊥ ⊥ R DELAYASSOC1 > R ⊥ ⊥ ⊥ ⊥

PARTOUTBREAK > > ⊥ ⊥ ⊥ ⊥ SETVAVIEWMIS > ⊥ ⊥ ⊥ ⊥ ⊥

FOAMTRACE > ⊥ ⊥ ⊥ > ⊥ FEPSTREATED > ⊥ ⊥ ⊥ W ⊥

RELVIEWCON > > > > ⊥ > GETNEXTVIEW > ⊥ ⊥ ⊥ W ⊥

CANLOCPUBLIC1 > ⊥ W W ⊥ > GETVABSTIME R ⊥ ⊥ ⊥ W ⊥

UNDOWRITELOG > W > ⊥ ⊥ > GETFEPPONUM R ⊥ ⊥ ⊥ W ⊥

CLEARLOG > W > ⊥ ⊥ > GETVIEWINFO R R R ⊥ W ⊥

PARTOUTREQ W > > ⊥ ⊥ > TRACEAM R ⊥ ⊥ ⊥ ⊥ ⊥

OUTPUTVAREQR > > ⊥ ⊥ ⊥ > SUBLOCPUBLIC R ⊥ ⊥ > ⊥ ⊥

DISASSOCVIEW > > > ⊥ ⊥ > CANLOCPUBLIC R ⊥ ⊥ > ⊥ ⊥

SPLITVA > > > ⊥ ⊥ > COPYPUBLIC R ⊥ ⊥ > ⊥ ⊥

NOOUTPUTR > > > ⊥ ⊥ > GETNEXTLOG ⊥ R R ⊥ W ⊥

CHARGRESULTSR W > > ⊥ ⊥ > STOREAC ⊥ W ⊥ ⊥ ⊥ ⊥

PARTOUTREADYR > > > ⊥ ⊥ > FOAMCLEAR ⊥ ⊥ ⊥ ⊥ W ⊥

OUTPUTVAREQREJ > R ⊥ ⊥ ⊥ ⊥

Table C.2: CHVIEW - usage of File variables



91

Block: CHVIEW

(Middleware)

Files→

signals ↓

SA
E

C
N

T
R

E
C

O
R

D Files→

signals ↓

SA
E

C
N

T
R

E
C

O
R

D

WRITEPUBLIC ⊥ OUTPUTFEPR >

READPUBLIC ⊥ OUTPUTFEPREJ >

READLOG ⊥ CLOSESESSION1R >

CREGENVIEW > CLEARFULLCONG >

WRITELOGEND > GETSTRUCTOT ⊥

CREATEVIEW > CHVIEWCONTRACE ⊥

INITVIEW > CHVIEWCONCLEAR ⊥

OPENVIEWCON > RVIEWSTRUC ⊥

WRITEPUBEND > STORERESKEY ⊥

WRITELOG > SUBLOCPUBCDT ⊥

RESERVEVIEW > VIEWSTATUS ⊥

STOREFEP ⊥ VIEWSERVICE ⊥

OPENSESSION1R > VIEWSPEC ⊥

OPENSESSION1REJ > UPDATEEVENT ⊥

INITOUTPUT > READVABSTIME ⊥

CONTINUEB > ASSOCVIEW ⊥

STARTCHOUTPUT R DELAYASSOC1 ⊥

PARTOUTBREAK ⊥ SETVAVIEWMIS ⊥

FOAMTRACE ⊥ FEPSTREATED ⊥

RELVIEWCON > GETNEXTVIEW ⊥

CANLOCPUBLIC1 > GETVABSTIME ⊥

UNDOWRITELOG > GETFEPPONUM ⊥

CLEARLOG > GETVIEWINFO ⊥

PARTOUTREQ > TRACEAM ⊥

OUTPUTVAREQR > SUBLOCPUBLIC ⊥

DISASSOCVIEW > CANLOCPUBLIC ⊥

SPLITVA > COPYPUBLIC ⊥

NOOUTPUTR > GETNEXTLOG ⊥

CHARGRESULTSR > STOREAC ⊥

PARTOUTREADYR > FOAMCLEAR ⊥

OUTPUTVAREQREJ ⊥

Table C.3: CHVIEW - file variables that need to be considered under the as-
sumption that SEIZE is not executed in parallel.



92 Chapter C. The Potential Memory Conflicts

B
lo

ck
:L

A
D

(O
S)

va
ri

ab
le

s
→

si
gn

al
s
↓

CPROGERRORCODE

CPROGERRORBUFFERTYPE

CCLOCKDATE

CCOMBANKUSERPOINTERTEMP

CCOMBANKRESULTCODETEMP

CAUTOSAACTIVE

COWNREF

CCOMBANK32PREPNUM

CCOMBANK64PREPNUM

CCOMBANK128PREPNUM

CCOMBANK256PREPNUM

CCOMBANK512PREPNUM

CCOMBANK1KPREPNUM

CCOMBANK2KPREPNUM

CCOMBANK4KPREPNUM

CCOMBANK8KPREPNUM

CCOMBANK16KPREPNUM

CCOMBANK32KPREPNUM

CCOMBANK32FREELISTENTRY

CCOMBANK32NUMBOFCONGESTIONS

CCOMBANK32NUMBOFUSEDIND

CCOMBANK32MAXNUMBOFUSEDIND

CCOMBANK32FREELISTEXIT

CCOMBANK64FREELISTENTRY

CCOMBANK64NUMBOFCONGESTIONS

CCOMBANK64NUMBOFUSEDIND

CCOMBANK64MAXNUMBOFUSEDIND

CCOMBANK64FREELISTEXIT

CCOMBANK128FREELISTENTRY

CCOMBANK128NUMBOFCONGESTIONS

CCOMBANK128NUMBOFUSEDIND

CCOMBANK128MAXNUMBOFUSEDIND

CCOMBANK128FREELISTEXIT

CCOMBANK256FREELISTENTRY

CCOMBANK256NUMBOFCONGESTIONS

CCOMBANK256NUMBOFUSEDIND

CCOMBANK256MAXNUMBOFUSEDIND

CCOMBANK256FREELISTEXIT

CCOMBANK512FREELISTENTRY

CCOMBANK512NUMBOFCONGESTIONS

CCOMBANK512NUMBOFUSEDIND

CCOMBANK512MAXNUMBOFUSEDIND

CCOMBANK512FREELISTEXIT

A
L

L
B

U
F

W
W

R
⊥

⊥
R

R
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥

G
E

T
B

U
FA

B
SA

D
R

W
W

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥

R
E

A
D

B
SI

Z
E

W
W

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥

A
LL

C
O

M
B

U
F

W
W

R
W

W
R

R
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

>
>

>
>

W
>

>
>

>
W

>
>

>
>

W
>

>
>

>
W

>
>

>
>

W

C
B

FL
C

O
N

N
E

C
T

W
W

⊥
W

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥

G
E

T
C

O
M

B
U

FR
E

F
⊥

⊥
⊥

W
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

R
E

LC
O

M
B

U
F

⊥
⊥

⊥
W

⊥
⊥

⊥
R

R
R

R
R

R
R

R
R

R
R
>

⊥
>

⊥
W

>
⊥

>
⊥

W
>

⊥
>

⊥
W

>
⊥

>
⊥

W
>

⊥
>

⊥
W

R
E

A
D

C
B

ST
A

T
E

⊥
⊥

⊥
⊥

⊥
⊥

⊥
R

R
R

R
R

R
R

R
R

R
R
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

CCOMBANK1KFREELISTENTRY

CCOMBANK1KNUMBOFCONGESTIONS

CCOMBANK1KNUMBOFUSEDIND

CCOMBANK1KMAXNUMBOFUSEDIND

CCOMBANK1KFREELISTEXIT

CCOMBANK2KFREELISTENTRY

CCOMBANK2KNUMBOFCONGESTIONS

CCOMBANK2KNUMBOFUSEDIND

CCOMBANK2KMAXNUMBOFUSEDIND

CCOMBANK2KFREELISTEXIT

CCOMBANK4KFREELISTENTRY

CCOMBANK4KNUMBOFCONGESTIONS

CCOMBANK4KNUMBOFUSEDIND

CCOMBANK4KMAXNUMBOFUSEDIND

CCOMBANK4KFREELISTEXIT

CCOMBANK8KFREELISTENTRY

CCOMBANK8KNUMBOFCONGESTIONS

CCOMBANK8KNUMBOFUSEDIND

CCOMBANK8KMAXNUMBOFUSEDIND

CCOMBANK8KFREELISTEXIT

CCOMBANK16KFREELISTENTRY

CCOMBANK16KNUMBOFCONGESTIONS

CCOMBANK16KNUMBOFUSEDIND

CCOMBANK16KMAXNUMBOFUSEDIND

CCOMBANK16KFREELISTEXIT

CCOMBANK32KFREELISTENTRY

CCOMBANK32KNUMBOFCONGESTIONS

CCOMBANK32KNUMBOFUSEDIND

CCOMBANK32KMAXNUMBOFUSEDIND

CCOMBANK32KFREELISTEXIT

CCOMBANKTIMEOUTQUEUEEXIT

CCOMBANKTIMEOUTQUEUEENTRY

CCOMBANKTIMEOUTQUEUECARDINALITY

CCOMBANKNIL

A
L

L
B

U
F

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

G
E

T
B

U
FA

B
SA

D
R

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

R
E

A
D

B
SI

Z
E

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

A
LL

C
O

M
B

U
F

>
>

>
>

W
>

>
>

>
W

>
>

>
>

W
>

>
>

>
W

>
>

>
>

W
>

>
>

>
W

⊥
⊥

⊥
R

C
B

FL
C

O
N

N
E

C
T

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

G
E

T
C

O
M

B
U

FR
E

F
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥

R
E

LC
O

M
B

U
F

>
⊥

>
⊥

W
>

⊥
>

⊥
W

>
⊥

>
⊥

W
>

⊥
>

⊥
W

>
⊥

>
⊥

W
>

⊥
>

⊥
W

W
W

>
R

R
E

A
D

C
B

ST
A

T
E

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

Table C.4: LAD - usage of common variables.



93

Block: LAD

(OS)

Files→

signals ↓

C
O

M
B

A
N

K
32

C
O

M
B

A
N

K
64

C
O

M
B

A
N

K
128

C
O

M
B

A
N

K
256

C
O

M
B

A
N

K
512

C
O

M
B

A
N

K
1K

C
O

M
B

A
N

K
2K

C
O

M
B

A
N

K
4K

C
O

M
B

A
N

K
8K

C
O

M
B

A
N

K
16K

C
O

M
B

A
N

K
32K

ALLCOMBUF W W W W W W W W W W W

CBFLCONNECT > > > > > > > > > > >

GETCOMBUFREF R R R R R R R R R R R

RELCOMBUF > > > > > > > > > > >

READCBSTATE R R R R R R R R R R R

Table C.5: LAD - usage File variables.



94 Chapter C. The Potential Memory Conflicts
B

lo
ck

:M
FM

(O
S)

va
ri

ab
le

s
→

si
gn

al
s
↓

CPROTECTMFMDATA

CFORLOPPID

CFLINDNUM

CRESTARTID

CFCDATINPROGR

CRESTARTFLMARK

CRESTARTFLTYPE

CLARGERESTARTFLPTR

CSAVEDOUBLE02

CPTSFLTRACEINPROGR

CTQMINSUPERVCONG

CPTRTOFIRSTIDLEFLREC

CCOPYPTRTOFIRSTIDLEFLREC

CPTRTOLASTIDLEFLREC

CSIZEALTINCRFL

CTIMESTAMP

CFLSUBMODE

CSTATICLINKINCL

CIXTOFIRSTIDLEINDREC

CPTRTOFIRSTIDLEINDREC

CRESTARTINDMARK

CRESTARTINDTYPE

CLARGERESTARTINDPTR

CLARGERESTARTINDIX

CINDINDNUM

CSIZEALTINCRIND

CMAXNUMPASSIVEIND02

CFLECFSTATUS

CSIZEALTDECRIND

CPTRTOLASTIDLEINDREC

CIXTOLASTIDLEINDREC

CNUMOFUSEDINDREC

CPREPNUMIND

CNUMSIZEALTDECRIND

CNUMOFUSEDFLREC

CSIZEALTDECRFL

CPREPNUMFL

CNUMSIZEALTDECRFL

CTQSECCONGFLREL

CTQMINCONGFL

CREBUILDIDLELISTS

CTQMINCONGIND

CFLMODE

CUPDATEINPROGRESS06

CREQUESTSUBMODE06

CTQSECLOADSCAN

CTQSECSTATUSUPDATE

CECFACTIONAFTERCONG06

CECFONDELAY06

CSYFSCACTIVEDELAY

COWNBLOCKREF

FL
ST

A
R

T
U

N
R

Q
W

W
R

R
R

>
R

>
W

R
W

>
W

>
>

R
>

W
>

>
>

R
>

>
R

>
⊥

R
R

⊥
⊥

>
R
⊥

>
R

R
>

W
>

W
>

R
W

W
W

W
R

W
>

R

F
LS

TA
RT

C
O

R
Q

W
W

R
R

R
>

R
>

W
R

>
>

W
>

>
R
>

W
>

>
>

R
>

>
R

>
R

R
R

⊥
⊥

>
R
⊥

>
R

R
>

W
>

W
>

R
W

W
W

W
R

W
>

R

FL
PA

R
T

R
Q

W
W

R
R

R
R

R
R

W
R

⊥
W

W
W

⊥
⊥

>
⊥

>
>

>
R

>
>

R
>

R
⊥

R
⊥

⊥
>

R
⊥

>
R

R
>

W
>

W
>

R
W

W
W

W
R

W
>

R

FL
PA

R
T

E
X

T
R

Q
W

>
R

R
R

R
R

R
⊥

R
⊥

W
W

W
⊥

⊥
>

⊥
>

>
>

R
>

>
R

>
R

⊥
R

⊥
⊥

>
R
⊥

>
R

R
>

W
>

W
>

R
W

W
W

W
R

W
>

R

F
LL

E
AV

E
R

Q
W

>
R

R
R

R
R

R
⊥

⊥
⊥

W
W

>
⊥

⊥
⊥

⊥
>

>
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
R

W
W

>
R
>

>
R

R
>

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥

FL
JO

IN
R

Q
W

W
R

R
⊥

⊥
⊥

⊥
⊥

R
⊥

W
W

>
⊥

⊥
⊥

⊥
>

>
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
R

W
W

>
R
>

>
R

R
>

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥

FL
U

N
JO

IN
R

Q
W

>
R
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
W

W
>

⊥
⊥

⊥
⊥

>
>

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

R
W

W
>

R
>

>
R

R
>

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥

FL
SA

V
E

R
Q

W
W

R
R

⊥
⊥

R
R

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
W

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥

FL
U

N
SA

V
E

R
Q

W
W

R
R

⊥
⊥

R
R

⊥
⊥

⊥
W

W
W

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

>
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥

FL
A

B
O

R
T

R
Q

>
>

R
R

R
R

R
R

⊥
⊥

⊥
W

W
W

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

>
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥

FL
R

E
L

E
A

SE
R

Q
>

W
R

R
⊥

⊥
⊥

⊥
⊥

R
⊥

W
W

W
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
>

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

IN
Q

R
E

ST
FL

R
Q

>
⊥

R
⊥

R
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
R

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥

R
E

ST
A

R
T

FL
R

Q
W

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
R

W
W

>
R
>

>
R

R
>

⊥
⊥

⊥
⊥

R
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥

M
FM

O
PE

R
A

T
E

R
W

>
R

R
R

R
R

R
⊥

R
⊥

⊥
⊥

⊥
⊥

R
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
R

⊥
⊥

⊥
R

⊥
⊥

⊥
⊥

⊥
⊥

⊥
R

C
PB

R
E

A
K

R
>

W
R

R
⊥

R
R

R
⊥

R
⊥

W
W

>
⊥

R
>

⊥
>

>
⊥

⊥
⊥

⊥
⊥

⊥
⊥

W
R

W
W

>
R
>

>
R

R
>

R
⊥

⊥
⊥

R
⊥

⊥
⊥

⊥
>

⊥
⊥

R

IN
IT

FL
E

R
R

O
R

⊥
W

⊥
⊥

R
⊥

⊥
⊥

⊥
R

⊥
⊥

⊥
⊥

⊥
R
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
R

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

FL
PR

O
T

E
C

T
R

Q
⊥

>
R
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥

C
H

E
C

K
JO

IN
FI

D
⊥

⊥
R
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥

IN
Q

ST
A

T
FL

R
Q

⊥
⊥

R
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥

FL
E

R
R

O
R

C
R

E
A

T
E

>
⊥

R
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥

F
LA

U
D

IT
R

Q
>

⊥
R

R
R

R
R

R
⊥

⊥
⊥

W
W

>
⊥

⊥
⊥

⊥
>

>
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
R

W
W

>
R
>

>
R

R
>

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥

E
V

E
N

T
M

E
SS

A
G

E
A

⊥
⊥

⊥
>

W
⊥

⊥
⊥

⊥
⊥

⊥
W

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
W

⊥
⊥

⊥
⊥

⊥
⊥

⊥

M
FM

R
E

A
D

R
>

⊥
R
⊥

W
W

W
W

⊥
R

W
W

W
W

W
⊥

⊥
⊥

>
>

W
W

W
W

R
W

⊥
⊥

>
W

W
>

>
>

W
W

W
⊥

R
W

W
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
W

R

FL
E

R
R

O
R

IN
FR

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
R
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

FL
U

PD
A

T
E

D
U

M
P

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
R
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

FL
E

R
R

O
R

R
Q

⊥
W

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥
⊥

⊥

Table C.6: MFM - usage of common variables.



95

Block: MFM

(OS)

Files→

signals ↓

FL
R

E
C

IN
D

R
E

C

FLSTARTUNRQ > >

FLSTARTCORQ > >

FLPARTRQ > >

FLPARTEXTRQ > >

FLLEAVERQ > >

FLJOINRQ > >

FLUNJOINRQ > >

FLSAVERQ > ⊥

FLUNSAVERQ > ⊥

FLABORTRQ > ⊥

FLRELEASERQ > ⊥

INQRESTFLRQ R R

RESTARTFLRQ > >

CPBREAKR > >

FLPROTECTRQ > ⊥

CHECKJOINFID R ⊥

INQSTATFLRQ R ⊥

FLERRORCREATE R R

FLAUDITRQ > >

MFMREADR > >

Table C.7: MFM - usage File variables.



96 Chapter C. The Potential Memory Conflicts

Block: MSCCO

(Application)

variables→

signals ↓

C
M

E
SSA

G
E

B
U

FR

C
D

A
TA

R
E

A
D

FR
O

M
T

E
M

P

C
M

E
SSA

G
E

B
U

FR
A

C
A

N
T

E
R

A
L

E
N

G
T

H

C
U

N
E

X
PE

C
T

E
D

E
X

IT

C
D

A
TA

L
E

N
G

T
H

C
SSN

C
IN

D
E

X

C
E

X
T

SPC
1

C
E

X
T

SPC
2

C
PR

IO
R

IT
YA

N
SI

C
O

W
N

SPM
E

M

C
O

W
N

SPN
E

T

C
O

W
N

SPC
L

U

SCCONNIND W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W ⊥ W ⊥ ⊥ ⊥ ⊥

SCCONNINDE W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > R > ⊥ ⊥ ⊥ ⊥

RNOCOMREQ W ⊥ ⊥ ⊥ > > W W W W R R R R

RNOCOMREQL W ⊥ ⊥ ⊥ > > W W W W R R R R

C7CREFIND2 W ⊥ ⊥ ⊥ > ⊥ ⊥ W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

SCCONNCONF W ⊥ ⊥ ⊥ > ⊥ ⊥ W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

SCCREFIND W ⊥ ⊥ ⊥ > ⊥ ⊥ W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

C7DATAIND2 W W W > > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

SCDATAIND W W W > > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

SCCONNCONFE W ⊥ ⊥ ⊥ > ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

C7CREFIND2E W ⊥ ⊥ ⊥ > ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

SCCREFINDE W ⊥ ⊥ ⊥ > ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

C7DATAIND2E W W W > > ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

SCDATAINDE W W W > > ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

C7DATARET2 W ⊥ W ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

C7DATARET2E W ⊥ W ⊥ > ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

SCDATARET W ⊥ W ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

SCDATARETE W ⊥ W ⊥ > ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

CBSEIZER ⊥ > ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

C7CONNCONF2 W ⊥ ⊥ ⊥ > ⊥ ⊥ W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

C7CONNCONF2E W ⊥ ⊥ ⊥ > ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

C7DISCIND2 ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

C7DISCIND2E ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

C7SCSEIZED ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

C7SCCONG ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

SCDISCIND ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

SCDISCINDE ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

BSCPTODPCR1 ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ W ⊥ ⊥ ⊥

OPCTOBSCPR ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

RRLAYCONG ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

RRLAYCONRESP ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

RRLAYDISC ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

RRLAYLINKED ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

RRSEIZEFAIL ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

CBSEIZEF ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

C7CONNIND2I W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

C7CONNIND2S W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

SCCONNINDI W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W W W ⊥ ⊥ ⊥ ⊥

SCCONNINDS W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

C7CONNCONF2I W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

C7CREFIND2I W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

SCCONNCONFI W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

SCCREFINDI W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

C7DATAIND2I W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

SCDATAINDI W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

C7CONNCONF2S W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

SCCONNCONFS W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

C7CREFIND2S W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

SCCREFINDS W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

C7DATAIND2S W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

SCDATAINDS W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

C7CONNIND2E W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > R > ⊥ ⊥ ⊥ ⊥

SCDATARETI W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

SCOWNSPINFO ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W W W

C7CONNIND2 W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W ⊥ W ⊥ ⊥ ⊥ ⊥

SEIZECOO R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ W ⊥ W ⊥ ⊥ ⊥ ⊥

C7DATARET2I W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

C7DATARET2S W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

SCDATARETS W ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ R ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Table C.8: MSCCO - usage of common variables.



97

Block: MSCCO

(Application)

Files→

signals ↓

M
SC

C
O

D
A

TA
D

A
TA

T
E

M
PR

E
C

O
R

D

Files→

signals ↓

M
SC

C
O

D
A

TA
D

A
TA

T
E

M
PR

E
C

O
R

D

SCCONNIND > ⊥ RRLAYLINKED > ⊥

SCCONNINDE > ⊥ RRSEIZEFAIL > ⊥

RNOCOMREQ > ⊥ CBSEIZEF > >

RNOCOMREQL > ⊥ C7CONNCONF2I > ⊥

C7CREFIND2 > ⊥ C7CREFIND2I > ⊥

SCCONNCONF > ⊥ SCCONNCONFI > ⊥

SCCREFIND > ⊥ SCCREFINDI > ⊥

C7DATAIND2 > > C7DATAIND2I > ⊥

SCDATAIND > > SCDATAINDI > ⊥

SCCONNCONFE > ⊥ C7CONNCONF2S R ⊥

C7CREFIND2E > ⊥ SCCONNCONFS R ⊥

SCCREFINDE > ⊥ C7CREFIND2S R ⊥

C7DATAIND2E > > SCCREFINDS R ⊥

SCDATAINDE > > C7DATAIND2S R ⊥

C7DATARET2 R ⊥ SCDATAINDS R ⊥

C7DATARET2E R ⊥ C7CONNIND2E > ⊥

SCDATARET > ⊥ SCDATARETI R ⊥

SCDATARETE > ⊥ C7CONNIND2 > ⊥

CBSEIZER > > SEIZECOO > ⊥

C7CONNCONF2 > ⊥ C7DATARET2I R ⊥

C7CONNCONF2E > ⊥ C7DATARET2S R ⊥

C7DISCIND2 > > SCDATARETS R ⊥

C7DISCIND2E > > C7DISCIND2I > ⊥

C7SCSEIZED > ⊥ C7DISCIND2S R ⊥

C7SCCONG > ⊥ CBRELEASER > ⊥

SCDISCIND > > RSCLEAR > ⊥

SCDISCINDE > > RSTRACE > ⊥

BSCPTODPCR1 > ⊥ SCDISCINDI > ⊥

OPCTOBSCPR > ⊥ SCDISCINDS R ⊥

RRLAYCONG > ⊥ TRACE R ⊥

RRLAYCONRESP > ⊥ FLSETSTORD W >

RRLAYDISC > >

Table C.9: MSCCO - usage File variables.



98 Chapter C. The Potential Memory Conflicts

Block File Shared Forlopp: shared Forlopp: unique

CHVIEW
VIEWFILE X
LOGHEADER X
LOGPART X
PUBLICDATA X
SESSION X
SAECNTRECORD X

LAD
COMBANK32 X
COMBANK64 X
COMBANK128 X
COMBANK256 X
COMBANK512 X
COMBANK1K X
COMBANK2K X
COMBANK4K X
COMBANK8K X
COMBANK16K X
COMBANK32K X

MFM
FLREC X
INDREC X

MSCCO
MSCCODATADATA X
TEMPRECORD X

Table C.10: The different types of files in the examined blocks.



99

B
lo

ck
:C

H
V

IE
W

(M
id

dl
ew

ar
e)

si
gn

al
s
↓
→

WRITEPUBLIC

READPUBLIC

READLOG

CREGENVIEW

WRITELOGEND

CREATEVIEW

INITVIEW

OPENVIEWCON

WRITEPUBEND

WRITELOG

RESERVEVIEW

STOREFEP

OPENSESSION1R

OPENSESSION1REJ

INITOUTPUT

CONTINUEB

REQRESKEY

STARTCHOUTPUT

PARTOUTBREAK

FOAMTRACE

RELVIEWCON

CANLOCPUBLIC1

UNDOWRITELOG

CLEARLOG

PARTOUTREQ

OUTPUTVAREQR

DISASSOCVIEW

DELAYDISASSOC

SPLITVA

DELAYSPLITVA

NOOUTPUTR

CHARGRESULTSR

PARTOUTREADYR

SETPRECONGFEP

PRECONGFEP

CLEARPRECONGFEP

PRECONGFEPCLRD

OUTPUTVAREQREJ

OUTPUTFEPR

OUTPUTFEPREJ

CLOSESESSION1R

CLEARFULLCONG

GETSTRUCTOT

SWITCHFEPS

FEPSWITCHEDR

CHVIEWCONTRACE

CHVIEWCONCLEAR

RVIEWSTRUC

STORERESKEY

SUBLOCPUBCDT

VIEWSTATUS

VIEWSERVICE

VIEWSPEC

UPDATEEVENT

READVABSTIME

ASSOCVIEW

DELAYASSOC1

SETVAVIEWMIS

FEPSTREATED

GETNEXTVIEW

GETVABSTIME

GETFEPPONUM

GETVIEWINFO

TRACEAM

SUBLOCPUBLIC

CANLOCPUBLIC

COPYPUBLIC

GETNEXTLOG

STOREAC

FOAMCLEAR

W
R

IT
E

PU
B

LI
C

C
C

R
E

A
D

PU
B

LI
C

C

R
E

A
D

LO
G

C
R

E
G

E
N

V
IE

W
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

W
R

IT
E

LO
G

E
N

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
R

E
A

T
E

V
IE

W
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

IN
IT

V
IE

W
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

O
PE

N
V

IE
W

C
O

N
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

W
R

IT
E

PU
B

E
N

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

W
R

IT
E

LO
G

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

R
E

SE
RV

E
V

IE
W

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

ST
O

R
E

FE
P

O
PE

N
SE

SS
IO

N
1R

O
PE

N
SE

SS
IO

N
1R

E
J

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

IN
IT

O
U

T
PU

T
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
O

N
T

IN
U

E
B

R
E

Q
R

E
SK

E
Y

ST
A

R
T

C
H

O
U

T
PU

T

PA
R

TO
U

T
B

R
E

A
K

FO
A

M
T

R
A

C
E

R
E

LV
IE

W
C

O
N

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
A

N
L

O
C

PU
B

L
IC

1
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

U
N

D
O

W
R

IT
E

L
O

G
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
L

E
A

R
L

O
G

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

PA
R

TO
U

T
R

E
Q

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

O
U

T
PU

T
VA

R
E

Q
R

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

D
IS

A
SS

O
C

V
IE

W
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

D
E

L
A

Y
D

IS
A

SS
O

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SP
L

IT
VA

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

D
E

L
A

Y
SP

L
IT

VA
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

N
O

O
U

T
PU

T
R

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
H

A
R

G
R

E
SU

LT
SR

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

PA
R

TO
U

T
R

E
A

D
Y

R
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SE
T

PR
E

C
O

N
G

FE
P

PR
E

C
O

N
G

FE
P

C
L

E
A

R
PR

E
C

O
N

G
FE

P

PR
E

C
O

N
G

FE
PC

L
R

D

O
U

T
PU

T
VA

R
E

Q
R

E
J

O
U

T
PU

T
FE

PR

O
U

T
PU

T
FE

PR
E

J

C
L

O
SE

SE
SS

IO
N

1R

C
L

E
A

R
FU

L
L

C
O

N
G

G
E

T
ST

R
U

C
TO

T

SW
IT

C
H

FE
PS

FE
PS

W
IT

C
H

E
D

R

C
H

V
IE

W
C

O
N

T
R

A
C

E

C
H

V
IE

W
C

O
N

C
L

E
A

R

RV
IE

W
ST

R
U

C

ST
O

R
E

R
E

SK
E

Y

SU
B

L
O

C
PU

B
C

D
T

V
IE

W
ST

A
T

U
S

V
IE

W
SE

RV
IC

E

V
IE

W
SP

E
C

U
PD

A
T

E
E

V
E

N
T

R
E

A
D

VA
B

ST
IM

E

A
SS

O
C

V
IE

W

D
E

L
A

YA
SS

O
C

1

SE
T

VA
V

IE
W

M
IS

FE
PS

T
R

E
A

T
E

D

G
E

T
N

E
X

T
V

IE
W

G
E

T
VA

B
ST

IM
E

G
E

T
FE

PP
O

N
U

M

G
E

T
V

IE
W

IN
FO

T
R

A
C

E
A

M

SU
B

L
O

C
PU

B
L

IC

C
A

N
L

O
C

PU
B

L
IC

C
O

PY
PU

B
L

IC

G
E

T
N

E
X

T
L

O
G

ST
O

R
E

A
C

FO
A

M
C

L
E

A
R

Table C.11: CHVIEW - Potential conflicts (marked with C) caused by possible
simultaneous access to common variables. Derived from Table C.1.



100 Chapter C. The Potential Memory Conflicts

B
lo

ck
:C

H
V

IE
W

(M
id

dl
ew

ar
e)

si
gn

al
s
↓
→

WRITEPUBLIC

READPUBLIC

READLOG

CREGENVIEW

WRITELOGEND

CREATEVIEW

INITVIEW

OPENVIEWCON

WRITEPUBEND

WRITELOG

RESERVEVIEW

STOREFEP

OPENSESSION1R

OPENSESSION1REJ

INITOUTPUT

CONTINUEB

REQRESKEY

STARTCHOUTPUT

PARTOUTBREAK

FOAMTRACE

RELVIEWCON

CANLOCPUBLIC1

UNDOWRITELOG

CLEARLOG

PARTOUTREQ

OUTPUTVAREQR

DISASSOCVIEW

DELAYDISASSOC

SPLITVA

DELAYSPLITVA

NOOUTPUTR

CHARGRESULTSR

PARTOUTREADYR

SETPRECONGFEP

PRECONGFEP

CLEARPRECONGFEP

PRECONGFEPCLRD

OUTPUTVAREQREJ

OUTPUTFEPR

OUTPUTFEPREJ

CLOSESESSION1R

CLEARFULLCONG

GETSTRUCTOT

SWITCHFEPS

FEPSWITCHEDR

CHVIEWCONTRACE

CHVIEWCONCLEAR

RVIEWSTRUC

STORERESKEY

SUBLOCPUBCDT

VIEWSTATUS

VIEWSERVICE

VIEWSPEC

UPDATEEVENT

READVABSTIME

ASSOCVIEW

DELAYASSOC1

SETVAVIEWMIS

FEPSTREATED

GETNEXTVIEW

GETVABSTIME

GETFEPPONUM

GETVIEWINFO

TRACEAM

SUBLOCPUBLIC

CANLOCPUBLIC

COPYPUBLIC

GETNEXTLOG

STOREAC

FOAMCLEAR

W
R

IT
E

PU
B

LI
C

C
r

R
E

A
D

PU
B

LI
C

r

R
E

A
D

LO
G

C
R

E
G

E
N

V
IE

W
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

W
R

IT
E

LO
G

E
N

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
R

E
A

T
E

V
IE

W
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

IN
IT

V
IE

W
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

O
PE

N
V

IE
W

C
O

N
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

W
R

IT
E

PU
B

E
N

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

W
R

IT
E

LO
G

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

R
E

SE
RV

E
V

IE
W

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

ST
O

R
E

FE
P

O
PE

N
SE

SS
IO

N
1R

O
PE

N
SE

SS
IO

N
1R

E
J

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

IN
IT

O
U

T
PU

T
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
O

N
T

IN
U

E
B

R
E

Q
R

E
SK

E
Y

ST
A

R
T

C
H

O
U

T
PU

T

PA
R

TO
U

T
B

R
E

A
K

FO
A

M
T

R
A

C
E

R
E

LV
IE

W
C

O
N

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
A

N
L

O
C

PU
B

L
IC

1
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

U
N

D
O

W
R

IT
E

L
O

G
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
L

E
A

R
L

O
G

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

PA
R

TO
U

T
R

E
Q

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

O
U

T
PU

T
VA

R
E

Q
R

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

D
IS

A
SS

O
C

V
IE

W
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

D
E

L
A

Y
D

IS
A

SS
O

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SP
L

IT
VA

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

D
E

L
A

Y
SP

L
IT

VA
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

N
O

O
U

T
PU

T
R

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
H

A
R

G
R

E
SU

LT
SR

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

PA
R

TO
U

T
R

E
A

D
Y

R
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SE
T

PR
E

C
O

N
G

FE
P

PR
E

C
O

N
G

FE
P

C
L

E
A

R
PR

E
C

O
N

G
FE

P

PR
E

C
O

N
G

FE
PC

L
R

D

O
U

T
PU

T
VA

R
E

Q
R

E
J

O
U

T
PU

T
FE

PR

O
U

T
PU

T
FE

PR
E

J

C
L

O
SE

SE
SS

IO
N

1R

C
L

E
A

R
FU

L
L

C
O

N
G

G
E

T
ST

R
U

C
TO

T

SW
IT

C
H

FE
PS

FE
PS

W
IT

C
H

E
D

R

C
H

V
IE

W
C

O
N

T
R

A
C

E

C
H

V
IE

W
C

O
N

C
L

E
A

R

RV
IE

W
ST

R
U

C

ST
O

R
E

R
E

SK
E

Y

SU
B

L
O

C
PU

B
C

D
T

V
IE

W
ST

A
T

U
S

V
IE

W
SE

RV
IC

E

V
IE

W
SP

E
C

U
PD

A
T

E
E

V
E

N
T

R
E

A
D

VA
B

ST
IM

E

A
SS

O
C

V
IE

W

D
E

L
A

YA
SS

O
C

1

SE
T

VA
V

IE
W

M
IS

FE
PS

T
R

E
A

T
E

D

G
E

T
N

E
X

T
V

IE
W

G
E

T
VA

B
ST

IM
E

G
E

T
FE

PP
O

N
U

M

G
E

T
V

IE
W

IN
FO

T
R

A
C

E
A

M

SU
B

L
O

C
PU

B
L

IC

C
A

N
L

O
C

PU
B

L
IC

C
O

PY
PU

B
L

IC

G
E

T
N

E
X

T
L

O
G

ST
O

R
E

A
C

FO
A

M
C

L
E

A
R

Table C.12: CHVIEW - ’w-optimization’ applied on Table C.11. Removed
conflicts are marked with r.



101

B
lo

ck
:C

H
V

IE
W

(M
id

dl
ew

ar
e)

si
gn

al
s
↓
→

WRITEPUBLIC

READPUBLIC

READLOG

CREGENVIEW

WRITELOGEND

CREATEVIEW

INITVIEW

OPENVIEWCON

WRITEPUBEND

WRITELOG

RESERVEVIEW

STOREFEP

OPENSESSION1R

OPENSESSION1REJ

INITOUTPUT

CONTINUEB

REQRESKEY

STARTCHOUTPUT

PARTOUTBREAK

FOAMTRACE

RELVIEWCON

CANLOCPUBLIC1

UNDOWRITELOG

CLEARLOG

PARTOUTREQ

OUTPUTVAREQR

DISASSOCVIEW

DELAYDISASSOC

SPLITVA

DELAYSPLITVA

NOOUTPUTR

CHARGRESULTSR

PARTOUTREADYR

SETPRECONGFEP

PRECONGFEP

CLEARPRECONGFEP

PRECONGFEPCLRD

OUTPUTVAREQREJ

OUTPUTFEPR

OUTPUTFEPREJ

CLOSESESSION1R

CLEARFULLCONG

GETSTRUCTOT

SWITCHFEPS

FEPSWITCHEDR

CHVIEWCONTRACE

CHVIEWCONCLEAR

RVIEWSTRUC

STORERESKEY

SUBLOCPUBCDT

VIEWSTATUS

VIEWSERVICE

VIEWSPEC

UPDATEEVENT

READVABSTIME

ASSOCVIEW

DELAYASSOC1

SETVAVIEWMIS

FEPSTREATED

GETNEXTVIEW

GETVABSTIME

GETFEPPONUM

GETVIEWINFO

TRACEAM

SUBLOCPUBLIC

CANLOCPUBLIC

COPYPUBLIC

GETNEXTLOG

STOREAC

FOAMCLEAR

W
R

IT
E

PU
B

LI
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

R
E

A
D

PU
B

LI
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

R
E

A
D

LO
G

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
R

E
G

E
N

V
IE

W
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

W
R

IT
E

LO
G

E
N

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
R

E
A

T
E

V
IE

W
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

IN
IT

V
IE

W
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

O
PE

N
V

IE
W

C
O

N
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

W
R

IT
E

PU
B

E
N

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

W
R

IT
E

LO
G

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

R
E

SE
RV

E
V

IE
W

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

ST
O

R
E

FE
P

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

O
PE

N
SE

SS
IO

N
1R

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

O
PE

N
SE

SS
IO

N
1R

E
J

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

IN
IT

O
U

T
PU

T
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
O

N
T

IN
U

E
B

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

R
E

Q
R

E
SK

E
Y

ST
A

R
T

C
H

O
U

T
PU

T
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

PA
R

TO
U

T
B

R
E

A
K

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

FO
A

M
T

R
A

C
E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

R
E

LV
IE

W
C

O
N

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
A

N
L

O
C

PU
B

L
IC

1
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

U
N

D
O

W
R

IT
E

L
O

G
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
L

E
A

R
L

O
G

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

PA
R

TO
U

T
R

E
Q

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

O
U

T
PU

T
VA

R
E

Q
R

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

D
IS

A
SS

O
C

V
IE

W
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

D
E

L
A

Y
D

IS
A

SS
O

C

SP
L

IT
VA

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

D
E

L
A

Y
SP

L
IT

VA

N
O

O
U

T
PU

T
R

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
H

A
R

G
R

E
SU

LT
SR

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

PA
R

TO
U

T
R

E
A

D
Y

R
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SE
T

PR
E

C
O

N
G

FE
P

PR
E

C
O

N
G

FE
P

C
L

E
A

R
PR

E
C

O
N

G
FE

P

PR
E

C
O

N
G

FE
PC

L
R

D

O
U

T
PU

T
VA

R
E

Q
R

E
J

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

O
U

T
PU

T
FE

PR
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

O
U

T
PU

T
FE

PR
E

J
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
L

O
SE

SE
SS

IO
N

1R
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
L

E
A

R
FU

L
L

C
O

N
G

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

G
E

T
ST

R
U

C
TO

T
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SW
IT

C
H

FE
PS

FE
PS

W
IT

C
H

E
D

R

C
H

V
IE

W
C

O
N

T
R

A
C

E
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
H

V
IE

W
C

O
N

C
L

E
A

R
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

RV
IE

W
ST

R
U

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

ST
O

R
E

R
E

SK
E

Y
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SU
B

L
O

C
PU

B
C

D
T

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

V
IE

W
ST

A
T

U
S

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

V
IE

W
SE

RV
IC

E
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

V
IE

W
SP

E
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

U
PD

A
T

E
E

V
E

N
T

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

R
E

A
D

VA
B

ST
IM

E
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

A
SS

O
C

V
IE

W
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

D
E

L
A

YA
SS

O
C

1
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SE
T

VA
V

IE
W

M
IS

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

FE
PS

T
R

E
A

T
E

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

G
E

T
N

E
X

T
V

IE
W

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

G
E

T
VA

B
ST

IM
E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

G
E

T
FE

PP
O

N
U

M
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

G
E

T
V

IE
W

IN
FO

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

T
R

A
C

E
A

M
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SU
B

L
O

C
PU

B
L

IC
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
A

N
L

O
C

PU
B

L
IC

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
O

PY
PU

B
L

IC
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

G
E

T
N

E
X

T
L

O
G

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

ST
O

R
E

A
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

FO
A

M
C

L
E

A
R

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

Table C.13: CHVIEW - Potential conflicts in the file variables.



102 Chapter C. The Potential Memory Conflicts

B
lo

ck
:C

H
V

IE
W

(M
id

dl
ew

ar
e)

si
gn

al
s
↓
→

WRITEPUBLIC

READPUBLIC

READLOG

CREGENVIEW

WRITELOGEND

CREATEVIEW

INITVIEW

OPENVIEWCON

WRITEPUBEND

WRITELOG

RESERVEVIEW

STOREFEP

OPENSESSION1R

OPENSESSION1REJ

INITOUTPUT

CONTINUEB

REQRESKEY

STARTCHOUTPUT

PARTOUTBREAK

FOAMTRACE

RELVIEWCON

CANLOCPUBLIC1

UNDOWRITELOG

CLEARLOG

PARTOUTREQ

OUTPUTVAREQR

DISASSOCVIEW

DELAYDISASSOC

SPLITVA

DELAYSPLITVA

NOOUTPUTR

CHARGRESULTSR

PARTOUTREADYR

SETPRECONGFEP

PRECONGFEP

CLEARPRECONGFEP

PRECONGFEPCLRD

OUTPUTVAREQREJ

OUTPUTFEPR

OUTPUTFEPREJ

CLOSESESSION1R

CLEARFULLCONG

GETSTRUCTOT

SWITCHFEPS

FEPSWITCHEDR

CHVIEWCONTRACE

CHVIEWCONCLEAR

RVIEWSTRUC

STORERESKEY

SUBLOCPUBCDT

VIEWSTATUS

VIEWSERVICE

VIEWSPEC

UPDATEEVENT

READVABSTIME

ASSOCVIEW

DELAYASSOC1

SETVAVIEWMIS

FEPSTREATED

GETNEXTVIEW

GETVABSTIME

GETFEPPONUM

GETVIEWINFO

TRACEAM

SUBLOCPUBLIC

CANLOCPUBLIC

COPYPUBLIC

GETNEXTLOG

STOREAC

FOAMCLEAR

W
R

IT
E

PU
B

LI
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

R
E

A
D

PU
B

LI
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

R
E

A
D

LO
G

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
R

E
G

E
N

V
IE

W
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

W
R

IT
E

LO
G

E
N

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
R

E
A

T
E

V
IE

W
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

IN
IT

V
IE

W
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

O
PE

N
V

IE
W

C
O

N
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

W
R

IT
E

PU
B

E
N

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

W
R

IT
E

LO
G

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

R
E

SE
RV

E
V

IE
W

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

ST
O

R
E

FE
P

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

O
PE

N
SE

SS
IO

N
1R

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

O
PE

N
SE

SS
IO

N
1R

E
J

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

IN
IT

O
U

T
PU

T
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
O

N
T

IN
U

E
B

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

R
E

Q
R

E
SK

E
Y

ST
A

R
T

C
H

O
U

T
PU

T
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

PA
R

TO
U

T
B

R
E

A
K

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

FO
A

M
T

R
A

C
E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

R
E

LV
IE

W
C

O
N

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
A

N
L

O
C

PU
B

L
IC

1
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

U
N

D
O

W
R

IT
E

L
O

G
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
L

E
A

R
L

O
G

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

PA
R

TO
U

T
R

E
Q

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

O
U

T
PU

T
VA

R
E

Q
R

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

D
IS

A
SS

O
C

V
IE

W
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

D
E

L
A

Y
D

IS
A

SS
O

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SP
L

IT
VA

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

D
E

L
A

Y
SP

L
IT

VA
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

N
O

O
U

T
PU

T
R

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
H

A
R

G
R

E
SU

LT
SR

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

PA
R

TO
U

T
R

E
A

D
Y

R
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SE
T

PR
E

C
O

N
G

FE
P

PR
E

C
O

N
G

FE
P

C
L

E
A

R
PR

E
C

O
N

G
FE

P

PR
E

C
O

N
G

FE
PC

L
R

D

O
U

T
PU

T
VA

R
E

Q
R

E
J

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

O
U

T
PU

T
FE

PR
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

O
U

T
PU

T
FE

PR
E

J
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
L

O
SE

SE
SS

IO
N

1R
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
L

E
A

R
FU

L
L

C
O

N
G

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

G
E

T
ST

R
U

C
TO

T
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SW
IT

C
H

FE
PS

FE
PS

W
IT

C
H

E
D

R

C
H

V
IE

W
C

O
N

T
R

A
C

E
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
H

V
IE

W
C

O
N

C
L

E
A

R
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

RV
IE

W
ST

R
U

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

ST
O

R
E

R
E

SK
E

Y
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SU
B

L
O

C
PU

B
C

D
T

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

V
IE

W
ST

A
T

U
S

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

V
IE

W
SE

RV
IC

E
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

V
IE

W
SP

E
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

U
PD

A
T

E
E

V
E

N
T

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

R
E

A
D

VA
B

ST
IM

E
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

A
SS

O
C

V
IE

W
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

D
E

L
A

YA
SS

O
C

1
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SE
T

VA
V

IE
W

M
IS

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

FE
PS

T
R

E
A

T
E

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

G
E

T
N

E
X

T
V

IE
W

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

G
E

T
VA

B
ST

IM
E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

G
E

T
FE

PP
O

N
U

M
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

G
E

T
V

IE
W

IN
FO

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

T
R

A
C

E
A

M
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SU
B

L
O

C
PU

B
L

IC
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
A

N
L

O
C

PU
B

L
IC

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
O

PY
PU

B
L

IC
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

G
E

T
N

E
X

T
L

O
G

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

ST
O

R
E

A
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

FO
A

M
C

L
E

A
R

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

Table C.14: CHVIEW - A safe upper bound of the number of conflicts achieved
by combining Table C.12 and C.13.



103

B
lo

ck
:C

H
V

IE
W

(M
id

dl
ew

ar
e)

si
gn

al
s
↓
→

WRITEPUBLIC

READPUBLIC

READLOG

CREGENVIEW

WRITELOGEND

CREATEVIEW

INITVIEW

OPENVIEWCON

WRITEPUBEND

WRITELOG

RESERVEVIEW

STOREFEP

OPENSESSION1R

OPENSESSION1REJ

INITOUTPUT

CONTINUEB

REQRESKEY

STARTCHOUTPUT

PARTOUTBREAK

FOAMTRACE

RELVIEWCON

CANLOCPUBLIC1

UNDOWRITELOG

CLEARLOG

PARTOUTREQ

OUTPUTVAREQR

DISASSOCVIEW

DELAYDISASSOC

SPLITVA

DELAYSPLITVA

NOOUTPUTR

CHARGRESULTSR

PARTOUTREADYR

SETPRECONGFEP

PRECONGFEP

CLEARPRECONGFEP

PRECONGFEPCLRD

OUTPUTVAREQREJ

OUTPUTFEPR

OUTPUTFEPREJ

CLOSESESSION1R

CLEARFULLCONG

GETSTRUCTOT

SWITCHFEPS

FEPSWITCHEDR

CHVIEWCONTRACE

CHVIEWCONCLEAR

RVIEWSTRUC

STORERESKEY

SUBLOCPUBCDT

VIEWSTATUS

VIEWSERVICE

VIEWSPEC

UPDATEEVENT

READVABSTIME

ASSOCVIEW

DELAYASSOC1

SETVAVIEWMIS

FEPSTREATED

GETNEXTVIEW

GETVABSTIME

GETFEPPONUM

GETVIEWINFO

TRACEAM

SUBLOCPUBLIC

CANLOCPUBLIC

COPYPUBLIC

GETNEXTLOG

STOREAC

FOAMCLEAR

W
R

IT
E

PU
B

LI
C

R
E

A
D

PU
B

LI
C

R
E

A
D

LO
G

C
R

E
G

E
N

V
IE

W
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

W
R

IT
E

LO
G

E
N

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
R

E
A

T
E

V
IE

W
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

IN
IT

V
IE

W
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

O
PE

N
V

IE
W

C
O

N
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

W
R

IT
E

PU
B

E
N

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

W
R

IT
E

LO
G

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

R
E

SE
RV

E
V

IE
W

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

ST
O

R
E

FE
P

O
PE

N
SE

SS
IO

N
1R

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

O
PE

N
SE

SS
IO

N
1R

E
J

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

IN
IT

O
U

T
PU

T
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
O

N
T

IN
U

E
B

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

R
E

Q
R

E
SK

E
Y

ST
A

R
T

C
H

O
U

T
PU

T
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

PA
R

TO
U

T
B

R
E

A
K

FO
A

M
T

R
A

C
E

R
E

LV
IE

W
C

O
N

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
A

N
L

O
C

PU
B

L
IC

1
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

U
N

D
O

W
R

IT
E

L
O

G
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
L

E
A

R
L

O
G

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

PA
R

TO
U

T
R

E
Q

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

O
U

T
PU

T
VA

R
E

Q
R

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

D
IS

A
SS

O
C

V
IE

W
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

D
E

L
A

Y
D

IS
A

SS
O

C

SP
L

IT
VA

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

D
E

L
A

Y
SP

L
IT

VA

N
O

O
U

T
PU

T
R

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
H

A
R

G
R

E
SU

LT
SR

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

PA
R

TO
U

T
R

E
A

D
Y

R
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SE
T

PR
E

C
O

N
G

FE
P

PR
E

C
O

N
G

FE
P

C
L

E
A

R
PR

E
C

O
N

G
FE

P

PR
E

C
O

N
G

FE
PC

L
R

D

O
U

T
PU

T
VA

R
E

Q
R

E
J

O
U

T
PU

T
FE

PR
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

O
U

T
PU

T
FE

PR
E

J
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
L

O
SE

SE
SS

IO
N

1R
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
L

E
A

R
FU

L
L

C
O

N
G

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

G
E

T
ST

R
U

C
TO

T

SW
IT

C
H

FE
PS

FE
PS

W
IT

C
H

E
D

R

C
H

V
IE

W
C

O
N

T
R

A
C

E

C
H

V
IE

W
C

O
N

C
L

E
A

R

RV
IE

W
ST

R
U

C

ST
O

R
E

R
E

SK
E

Y

SU
B

L
O

C
PU

B
C

D
T

V
IE

W
ST

A
T

U
S

V
IE

W
SE

RV
IC

E

V
IE

W
SP

E
C

U
PD

A
T

E
E

V
E

N
T

R
E

A
D

VA
B

ST
IM

E

A
SS

O
C

V
IE

W

D
E

L
A

YA
SS

O
C

1

SE
T

VA
V

IE
W

M
IS

FE
PS

T
R

E
A

T
E

D

G
E

T
N

E
X

T
V

IE
W

G
E

T
VA

B
ST

IM
E

G
E

T
FE

PP
O

N
U

M

G
E

T
V

IE
W

IN
FO

T
R

A
C

E
A

M

SU
B

L
O

C
PU

B
L

IC

C
A

N
L

O
C

PU
B

L
IC

C
O

PY
PU

B
L

IC

G
E

T
N

E
X

T
L

O
G

ST
O

R
E

A
C

FO
A

M
C

L
E

A
R

Table C.15: CHVIEW - A tightened upper bound is achieved by assuming a
protected SEIZE operation.



104 Chapter C. The Potential Memory Conflicts

Block: LAD

(OS)

signals ↓ →

A
L

L
B

U
F

G
E

T
B

U
FA

B
SA

D
R

R
E

A
D

B
SIZ

E

A
LLC

O
M

B
U

F

C
B

FL
C

O
N

N
E

C
T

G
E

T
C

O
M

B
U

FR
E

F

R
E

LC
O

M
B

U
F

R
E

A
D

C
B

STA
T

E

ALLBUF C C C C

GETBUFABSADR C C C C

READBSIZE C C C C

ALLCOMBUF C C C C C C C

CBFLCONNECT C C C C C C

GETCOMBUFREF C C C

RELCOMBUF C C C C

READCBSTATE

Table C.16: LAD - Potential conflicts in the common variables.

Block: LAD

(OS)

signals ↓ →

A
L

L
B

U
F

G
E

T
B

U
FA

B
SA

D
R

R
E

A
D

B
SIZ

E

A
LLC

O
M

B
U

F

C
B

FL
C

O
N

N
E

C
T

G
E

T
C

O
M

B
U

FR
E

F

R
E

LC
O

M
B

U
F

R
E

A
D

C
B

STA
T

E

ALLBUF r r r r

GETBUFABSADR r r r r

READBSIZE r r r r

ALLCOMBUF r r r C r r C

CBFLCONNECT r r r r r r

GETCOMBUFREF r r r

RELCOMBUF C r r C

READCBSTATE

Table C.17: WriteBeforeRead-conflicts removed from Table C.16.



105

Block: LAD

(OS)

signals ↓ →

A
L

L
B

U
F

G
E

T
B

U
FA

B
SA

D
R

R
E

A
D

B
SIZ

E

A
LLC

O
M

B
U

F

C
B

FL
C

O
N

N
E

C
T

G
E

T
C

O
M

B
U

FR
E

F

R
E

LC
O

M
B

U
F

R
E

A
D

C
B

STA
T

E

ALLBUF

GETBUFABSADR

READBSIZE

ALLCOMBUF C C C C C

CBFLCONNECT C C C C C

GETCOMBUFREF C C C

RELCOMBUF C C C C C

READCBSTATE C C C

Table C.18: LAD - Potential conflicts in the file variables.



106 Chapter C. The Potential Memory Conflicts

Block: MFM

(OS)

signals ↓ →

FL
STA

R
T

U
N

R
Q

F
LSTA

RTC
O

R
Q

FL
PA

R
T

R
Q

FL
PA

R
T

E
X

T
R

Q

F
LLE

AV
E

R
Q

FL
JO

IN
R

Q

FL
U

N
JO

IN
R

Q

FL
SAV

E
R

Q

FL
U

N
SAV

E
R

Q

FL
A

B
O

R
T

R
Q

FL
R

E
L

E
A

SE
R

Q

IN
Q

R
E

ST
FL

R
Q

R
E

STA
R

T
FL

R
Q

M
FM

O
PE

R
A

T
E

R

C
PB

R
E

A
K

R

IN
IT

FL
E

R
R

O
R

FL
PR

O
T

E
C

T
R

Q

C
H

E
C

K
JO

IN
FID

IN
Q

STA
T

FL
R

Q

FL
E

R
R

O
R

C
R

E
A

T
E

F
LAU

D
ITR

Q

E
V

E
N

T
M

E
SSA

G
E

A

M
FM

R
E

A
D

R

FL
E

R
R

O
R

IN
FR

FL
U

PD
A

T
E

D
U

M
P

FL
E

R
R

O
R

R
Q

FLSTARTUNRQ C C C C C C C C C C C C C C C C C C C C C C

FLSTARTCORQ C C C C C C C C C C C C C C C C C C C C C C

FLPARTRQ C C C C C C C C C C C C C C C C C C C C C C

FLPARTEXTRQ C C C C C C C C C C C C C C C C C C C C C C

FLLEAVERQ C C C C C C C C C C C C C C C C C C C C C C

FLJOINRQ C C C C C C C C C C C C C C C C C C C C C C

FLUNJOINRQ C C C C C C C C C C C C C C C C C C C C C C

FLSAVERQ C C C C C C C C C C C C C C C C C C C C C

FLUNSAVERQ C C C C C C C C C C C C C C C C C C C C C

FLABORTRQ C C C C C C C C C C C C C C C C C C C C C C

FLRELEASERQ C C C C C C C C C C C C C C C C C C C C C C

INQRESTFLRQ C C C C C C C C C C C C C C C C C C C

RESTARTFLRQ C C C C C C C C C C C C C C C C C C

MFMOPERATER C C C C C C C C C C C C C C C C C C C C C C

CPBREAKR C C C C C C C C C C C C C C C C C C C C C C

INITFLERROR C C C C C C C C C C C C C C C C

FLPROTECTRQ C C C C C C C C C C C C C C C C

CHECKJOINFID

INQSTATFLRQ

FLERRORCREATE C C C C C C C C C C C C C C C C C

FLAUDITRQ C C C C C C C C C C C C C C C C C C C

EVENTMESSAGEA C C C C C C C C C C C C C C C C

MFMREADR C C C C C C C C C C C C C C C C C C

FLERRORINFR

FLUPDATEDUMP

FLERRORRQ C C C C C C C C C C C C C C C

Table C.19: MFM - Possible conflicts in the common variables, with/without
optimization.



107

Block: MFM

(OS)

signals ↓ →

FL
STA

R
T

U
N

R
Q

F
LSTA

RTC
O

R
Q

FL
PA

R
T

R
Q

FL
PA

R
T

E
X

T
R

Q

F
LLE

AV
E

R
Q

FL
JO

IN
R

Q

FL
U

N
JO

IN
R

Q

FL
SAV

E
R

Q

FL
U

N
SAV

E
R

Q

FL
A

B
O

R
T

R
Q

FL
R

E
L

E
A

SE
R

Q

IN
Q

R
E

ST
FL

R
Q

R
E

STA
R

T
FL

R
Q

M
FM

O
PE

R
A

T
E

R

C
PB

R
E

A
K

R

IN
IT

FL
E

R
R

O
R

FL
PR

O
T

E
C

T
R

Q

C
H

E
C

K
JO

IN
FID

IN
Q

STA
T

FL
R

Q

FL
E

R
R

O
R

C
R

E
A

T
E

F
LAU

D
ITR

Q

E
V

E
N

T
M

E
SSA

G
E

A

M
FM

R
E

A
D

R

FL
E

R
R

O
R

IN
FR

FL
U

PD
A

T
E

D
U

M
P

FL
E

R
R

O
R

R
Q

FLSTARTUNRQ C C C C C C C C C C C C C C C C C C C C

FLSTARTCORQ C C C C C C C C C C C C C C C C C C C C

FLPARTRQ C C C C C C C C C C C C C C C C C C C C

FLPARTEXTRQ C C C C C C C C C C C C C C C C C C C C

FLLEAVERQ C C C C C C C C C C C C C C C C C C C C

FLJOINRQ C C C C C C C C C C C C C C C C C C C C

FLUNJOINRQ C C C C C C C C C C C C C C C C C C C C

FLSAVERQ C C C C C C C C C C C C C C C C C C C C

FLUNSAVERQ C C C C C C C C C C C C C C C C C C C C

FLABORTRQ C C C C C C C C C C C C C C C C C C C C

FLRELEASERQ C C C C C C C C C C C C C C C C C C C C

INQRESTFLRQ C C C C C C C C C C C C C C C C

RESTARTFLRQ C C C C C C C C C C C C C C C C C C C C

MFMOPERATER

CPBREAKR C C C C C C C C C C C C C C C C C C C C

INITFLERROR

FLPROTECTRQ C C C C C C C C C C C C C C C C C C C C

CHECKJOINFID C C C C C C C C C C C C C C C C

INQSTATFLRQ C C C C C C C C C C C C C C C C

FLERRORCREATE C C C C C C C C C C C C C C C C

FLAUDITRQ C C C C C C C C C C C C C C C C C C C C

EVENTMESSAGEA

MFMREADR C C C C C C C C C C C C C C C C C C C C

FLERRORINFR

FLUPDATEDUMP

FLERRORRQ

Table C.20: MFM - Possible conflicts in the file variables.



108 Chapter C. The Potential Memory Conflicts

Block: MFM

(OS)

signals ↓ →

FL
STA

R
T

U
N

R
Q

F
LSTA

RTC
O

R
Q

FL
PA

R
T

R
Q

FL
PA

R
T

E
X

T
R

Q

F
LLE

AV
E

R
Q

FL
JO

IN
R

Q

FL
U

N
JO

IN
R

Q

FL
SAV

E
R

Q

FL
U

N
SAV

E
R

Q

FL
A

B
O

R
T

R
Q

FL
R

E
L

E
A

SE
R

Q

IN
Q

R
E

ST
FL

R
Q

R
E

STA
R

T
FL

R
Q

M
FM

O
PE

R
A

T
E

R

C
PB

R
E

A
K

R

IN
IT

FL
E

R
R

O
R

FL
PR

O
T

E
C

T
R

Q

C
H

E
C

K
JO

IN
FID

IN
Q

STA
T

FL
R

Q

FL
E

R
R

O
R

C
R

E
A

T
E

F
LAU

D
ITR

Q

E
V

E
N

T
M

E
SSA

G
E

A

M
FM

R
E

A
D

R

FL
E

R
R

O
R

IN
FR

FL
U

PD
A

T
E

D
U

M
P

FL
E

R
R

O
R

R
Q

FLSTARTUNRQ C C C C C C C C C C C C C C C C C C C C C C C C

FLSTARTCORQ C C C C C C C C C C C C C C C C C C C C C C C C

FLPARTRQ C C C C C C C C C C C C C C C C C C C C C C C C

FLPARTEXTRQ C C C C C C C C C C C C C C C C C C C C C C C C

FLLEAVERQ C C C C C C C C C C C C C C C C C C C C C C C C

FLJOINRQ C C C C C C C C C C C C C C C C C C C C C C C C

FLUNJOINRQ C C C C C C C C C C C C C C C C C C C C C C C C

FLSAVERQ C C C C C C C C C C C C C C C C C C C C C C C C

FLUNSAVERQ C C C C C C C C C C C C C C C C C C C C C C C C

FLABORTRQ C C C C C C C C C C C C C C C C C C C C C C C C

FLRELEASERQ C C C C C C C C C C C C C C C C C C C C C C C C

INQRESTFLRQ C C C C C C C C C C C C C C C C C C C C

RESTARTFLRQ C C C C C C C C C C C C C C C C C C C C C

MFMOPERATER C C C C C C C C C C C C C C C C C C C C C C

CPBREAKR C C C C C C C C C C C C C C C C C C C C C C C C

INITFLERROR C C C C C C C C C C C C C C C C

FLPROTECTRQ C C C C C C C C C C C C C C C C C C C C C C C

CHECKJOINFID C C C C C C C C C C C C C C C C

INQSTATFLRQ C C C C C C C C C C C C C C C C

FLERRORCREATE C C C C C C C C C C C C C C C C C C

FLAUDITRQ C C C C C C C C C C C C C C C C C C C C C C

EVENTMESSAGEA C C C C C C C C C C C C C C C C

MFMREADR C C C C C C C C C C C C C C C C C C C C C

FLERRORINFR

FLUPDATEDUMP

FLERRORRQ C C C C C C C C C C C C C C C

Table C.21: MFM - A safe upper bound of the number of conflicts achieved by
combining Table C.19 and C.20.



109

B
lo

ck
:M

SC
C

O

(A
pp

lic
at

io
n)

si
gn

al
s
↓
→

SCCONNIND

SCCONNINDE

RNOCOMREQ

RNOCOMREQL

C7CREFIND2

SCCONNCONF

SCCREFIND

C7DATAIND2

SCDATAIND

SCCONNCONFE

C7CREFIND2E

SCCREFINDE

C7DATAIND2E

SCDATAINDE

C7DATARET2

C7DATARET2E

SCDATARET

SCDATARETE

CBSEIZER

C7CONNCONF2

C7CONNCONF2E

C7DISCIND2

C7DISCIND2E

C7SCSEIZED

C7SCCONG

SCDISCIND

SCDISCINDE

BSCPTODPCR1

OPCTOBSCPR

RRLAYCONG

RRLAYCONRESP

RRLAYDISC

RRLAYLINKED

RRSEIZEFAIL

CBSEIZEF

C7CONNIND2I

C7CONNIND2S

SCCONNINDI

SCCONNINDS

C7CONNCONF2I

C7CREFIND2I

SCCONNCONFI

SCCREFINDI

C7DATAIND2I

SCDATAINDI

C7CONNCONF2S

SCCONNCONFS

C7CREFIND2S

SCCREFINDS

C7DATAIND2S

SCDATAINDS

C7CONNIND2E

SCDATARETI

SCOWNSPINFO

C7CONNIND2

SEIZECOO

C7DATARET2I

C7DATARET2S

SCDATARETS

C7DISCIND2I

C7DISCIND2S

CBRELEASER

RSCLEAR

RSTRACE

SCDISCINDI

SCDISCINDS

TRACE

FLSETSTORD

SC
C

O
N

N
IN

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
C

O
N

N
IN

D
E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

R
N

O
C

O
M

R
E

Q
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

R
N

O
C

O
M

R
E

Q
L

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7C

R
E

FI
N

D
2

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
C

O
N

N
C

O
N

F
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
C

R
E

FI
N

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7D

A
TA

IN
D

2
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
D

AT
A

IN
D

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
C

O
N

N
C

O
N

FE
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7C

R
E

FI
N

D
2E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
C

R
E

FI
N

D
E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7D

A
TA

IN
D

2E
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
D

A
TA

IN
D

E
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7D

A
TA

R
E

T
2

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7D

A
TA

R
E

T
2E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
D

A
TA

R
E

T
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
D

A
TA

R
E

T
E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
B

SE
IZ

E
R

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7C

O
N

N
C

O
N

F2
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7C

O
N

N
C

O
N

F2
E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7D

IS
C

IN
D

2
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7D

IS
C

IN
D

2E
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7S

C
SE

IZ
E

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7S

C
C

O
N

G
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
D

IS
C

IN
D

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
D

IS
C

IN
D

E
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

B
SC

PT
O

D
PC

R
1

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

O
PC

TO
B

SC
PR

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

R
R

L
A

Y
C

O
N

G
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

R
R

L
A

Y
C

O
N

R
E

SP
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

R
R

L
A

Y
D

IS
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

R
R

L
A

Y
L

IN
K

E
D

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

R
R

SE
IZ

E
FA

IL
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
B

SE
IZ

E
F

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7C

O
N

N
IN

D
2I

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7C

O
N

N
IN

D
2S

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
C

O
N

N
IN

D
I

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
C

O
N

N
IN

D
S

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7C

O
N

N
C

O
N

F2
I

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7C

R
E

FI
N

D
2I

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
C

O
N

N
C

O
N

FI
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
C

R
E

FI
N

D
I

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7D

A
TA

IN
D

2I
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
D

A
TA

IN
D

I
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7C

O
N

N
C

O
N

F2
S

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
C

O
N

N
C

O
N

FS
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7C

R
E

FI
N

D
2S

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
C

R
E

FI
N

D
S

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7D

A
TA

IN
D

2S
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
D

A
TA

IN
D

S
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7C

O
N

N
IN

D
2E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
D

A
TA

R
E

T
I

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
O

W
N

SP
IN

FO
C

C

C
7C

O
N

N
IN

D
2

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SE
IZ

E
C

O
O

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7D

A
TA

R
E

T
2I

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7D

A
TA

R
E

T
2S

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
D

A
TA

R
E

T
S

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7D

IS
C

IN
D

2I

C
7D

IS
C

IN
D

2S

C
B

R
E

L
E

A
SE

R

R
SC

L
E

A
R

R
ST

R
A

C
E

SC
D

IS
C

IN
D

I

SC
D

IS
C

IN
D

S

T
R

A
C

E

FL
SE

T
ST

O
R

D

Table C.22: MSCCO - Possible conflicts in common variables, with/without
WriteBeforeRead- elimination applied.



110 Chapter C. The Potential Memory Conflicts

B
lo

ck
:M

SC
C

O

(A
pp

lic
at

io
n)

si
gn

al
s
↓
→

SCCONNIND

SCCONNINDE

RNOCOMREQ

RNOCOMREQL

C7CREFIND2

SCCONNCONF

SCCREFIND

C7DATAIND2

SCDATAIND

SCCONNCONFE

C7CREFIND2E

SCCREFINDE

C7DATAIND2E

SCDATAINDE

C7DATARET2

C7DATARET2E

SCDATARET

SCDATARETE

CBSEIZER

C7CONNCONF2

C7CONNCONF2E

C7DISCIND2

C7DISCIND2E

C7SCSEIZED

C7SCCONG

SCDISCIND

SCDISCINDE

BSCPTODPCR1

OPCTOBSCPR

RRLAYCONG

RRLAYCONRESP

RRLAYDISC

RRLAYLINKED

RRSEIZEFAIL

CBSEIZEF

C7CONNIND2I

C7CONNIND2S

SCCONNINDI

SCCONNINDS

C7CONNCONF2I

C7CREFIND2I

SCCONNCONFI

SCCREFINDI

C7DATAIND2I

SCDATAINDI

C7CONNCONF2S

SCCONNCONFS

C7CREFIND2S

SCCREFINDS

C7DATAIND2S

SCDATAINDS

C7CONNIND2E

SCDATARETI

SCOWNSPINFO

C7CONNIND2

SEIZECOO

C7DATARET2I

C7DATARET2S

SCDATARETS

C7DISCIND2I

C7DISCIND2S

CBRELEASER

RSCLEAR

RSTRACE

SCDISCINDI

SCDISCINDS

TRACE

FLSETSTORD

SC
C

O
N

N
IN

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
C

O
N

N
IN

D
E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

R
N

O
C

O
M

R
E

Q
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

R
N

O
C

O
M

R
E

Q
L

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7C

R
E

FI
N

D
2

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
C

O
N

N
C

O
N

F
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
C

R
E

FI
N

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7D

A
TA

IN
D

2
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
D

AT
A

IN
D

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
C

O
N

N
C

O
N

FE
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7C

R
E

FI
N

D
2E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
C

R
E

FI
N

D
E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7D

A
TA

IN
D

2E
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
D

A
TA

IN
D

E
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7D

A
TA

R
E

T
2

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7D

A
TA

R
E

T
2E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
D

A
TA

R
E

T
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
D

A
TA

R
E

T
E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
B

SE
IZ

E
R

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7C

O
N

N
C

O
N

F2
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7C

O
N

N
C

O
N

F2
E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7D

IS
C

IN
D

2
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7D

IS
C

IN
D

2E
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7S

C
SE

IZ
E

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7S

C
C

O
N

G
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
D

IS
C

IN
D

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
D

IS
C

IN
D

E
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

B
SC

PT
O

D
PC

R
1

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

O
PC

TO
B

SC
PR

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

R
R

L
A

Y
C

O
N

G
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

R
R

L
A

Y
C

O
N

R
E

SP
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

R
R

L
A

Y
D

IS
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

R
R

L
A

Y
L

IN
K

E
D

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

R
R

SE
IZ

E
FA

IL
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
B

SE
IZ

E
F

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7C

O
N

N
IN

D
2I

C
7C

O
N

N
IN

D
2S

SC
C

O
N

N
IN

D
I

SC
C

O
N

N
IN

D
S

C
7C

O
N

N
C

O
N

F2
I

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7C

R
E

FI
N

D
2I

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
C

O
N

N
C

O
N

FI
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
C

R
E

FI
N

D
I

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7D

A
TA

IN
D

2I
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
D

A
TA

IN
D

I
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7C

O
N

N
C

O
N

F2
S

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
C

O
N

N
C

O
N

FS
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7C

R
E

FI
N

D
2S

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
C

R
E

FI
N

D
S

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7D

A
TA

IN
D

2S
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
D

A
TA

IN
D

S
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7C

O
N

N
IN

D
2E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
D

A
TA

R
E

T
I

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
O

W
N

SP
IN

FO

C
7C

O
N

N
IN

D
2

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SE
IZ

E
C

O
O

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7D

A
TA

R
E

T
2I

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7D

A
TA

R
E

T
2S

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
D

A
TA

R
E

T
S

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7D

IS
C

IN
D

2I
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7D

IS
C

IN
D

2S
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
B

R
E

L
E

A
SE

R
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

R
SC

L
E

A
R

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

R
ST

R
A

C
E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
D

IS
C

IN
D

I
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
D

IS
C

IN
D

S
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

T
R

A
C

E
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

FL
SE

T
ST

O
R

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

Table C.23: MSCCO - Possible conflicts in the file variables.



111

B
lo

ck
:M

SC
C

O

(A
pp

lic
at

io
n)

si
gn

al
s
↓
→

SCCONNIND

SCCONNINDE

RNOCOMREQ

RNOCOMREQL

C7CREFIND2

SCCONNCONF

SCCREFIND

C7DATAIND2

SCDATAIND

SCCONNCONFE

C7CREFIND2E

SCCREFINDE

C7DATAIND2E

SCDATAINDE

C7DATARET2

C7DATARET2E

SCDATARET

SCDATARETE

CBSEIZER

C7CONNCONF2

C7CONNCONF2E

C7DISCIND2

C7DISCIND2E

C7SCSEIZED

C7SCCONG

SCDISCIND

SCDISCINDE

BSCPTODPCR1

OPCTOBSCPR

RRLAYCONG

RRLAYCONRESP

RRLAYDISC

RRLAYLINKED

RRSEIZEFAIL

CBSEIZEF

C7CONNIND2I

C7CONNIND2S

SCCONNINDI

SCCONNINDS

C7CONNCONF2I

C7CREFIND2I

SCCONNCONFI

SCCREFINDI

C7DATAIND2I

SCDATAINDI

C7CONNCONF2S

SCCONNCONFS

C7CREFIND2S

SCCREFINDS

C7DATAIND2S

SCDATAINDS

C7CONNIND2E

SCDATARETI

SCOWNSPINFO

C7CONNIND2

SEIZECOO

C7DATARET2I

C7DATARET2S

SCDATARETS

C7DISCIND2I

C7DISCIND2S

CBRELEASER

RSCLEAR

RSTRACE

SCDISCINDI

SCDISCINDS

TRACE

FLSETSTORD

SC
C

O
N

N
IN

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
C

O
N

N
IN

D
E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

R
N

O
C

O
M

R
E

Q
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

R
N

O
C

O
M

R
E

Q
L

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7C

R
E

FI
N

D
2

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
C

O
N

N
C

O
N

F
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
C

R
E

FI
N

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7D

A
TA

IN
D

2
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
D

AT
A

IN
D

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
C

O
N

N
C

O
N

FE
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7C

R
E

FI
N

D
2E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
C

R
E

FI
N

D
E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7D

A
TA

IN
D

2E
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
D

A
TA

IN
D

E
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7D

A
TA

R
E

T
2

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7D

A
TA

R
E

T
2E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
D

A
TA

R
E

T
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
D

A
TA

R
E

T
E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
B

SE
IZ

E
R

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7C

O
N

N
C

O
N

F2
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7C

O
N

N
C

O
N

F2
E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7D

IS
C

IN
D

2
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7D

IS
C

IN
D

2E
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7S

C
SE

IZ
E

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7S

C
C

O
N

G
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
D

IS
C

IN
D

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
D

IS
C

IN
D

E
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

B
SC

PT
O

D
PC

R
1

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

O
PC

TO
B

SC
PR

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

R
R

L
A

Y
C

O
N

G
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

R
R

L
A

Y
C

O
N

R
E

SP
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

R
R

L
A

Y
D

IS
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

R
R

L
A

Y
L

IN
K

E
D

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

R
R

SE
IZ

E
FA

IL
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
B

SE
IZ

E
F

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7C

O
N

N
IN

D
2I

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7C

O
N

N
IN

D
2S

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
C

O
N

N
IN

D
I

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
C

O
N

N
IN

D
S

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7C

O
N

N
C

O
N

F2
I

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7C

R
E

FI
N

D
2I

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
C

O
N

N
C

O
N

FI
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
C

R
E

FI
N

D
I

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7D

A
TA

IN
D

2I
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
D

A
TA

IN
D

I
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7C

O
N

N
C

O
N

F2
S

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
C

O
N

N
C

O
N

FS
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7C

R
E

FI
N

D
2S

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
C

R
E

FI
N

D
S

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7D

A
TA

IN
D

2S
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
D

A
TA

IN
D

S
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7C

O
N

N
IN

D
2E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
D

A
TA

R
E

T
I

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
O

W
N

SP
IN

FO
C

C

C
7C

O
N

N
IN

D
2

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SE
IZ

E
C

O
O

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7D

A
TA

R
E

T
2I

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7D

A
TA

R
E

T
2S

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
D

A
TA

R
E

T
S

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
7D

IS
C

IN
D

2I
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
7D

IS
C

IN
D

2S
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
B

R
E

L
E

A
SE

R
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

R
SC

L
E

A
R

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

R
ST

R
A

C
E

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

SC
D

IS
C

IN
D

I
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

SC
D

IS
C

IN
D

S
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

T
R

A
C

E
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

FL
SE

T
ST

O
R

D
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

Table C.24: MSCCO - A safe upper bound of the number of conflicts achieved
by combining Table C.22 and C.23.








