ISSUE 2

October 2006

Inside This Issue
1. Adding new functionality to
an old program by Gabri3l

2. Patching by using resource by

ThunderPwr

3. Patching Event Driven Nag, by
Shub-Nigurrath

4. Writing OllyDbg Scripts by

Buzifer

5. Utilizing Code Injection on an
ACprotected application by

condzero
6. Code Obfuscation by zyzygy

7. Testing for Olly using
NtYieldExecution by gabri3l

8. Coding a Serial Sniffer by

anorganix

9. Ring 3 debugger detection
via INVALID by deroko

10. PEB DIl Hooking Novel method
to Hook DllIs by deroko

11. TheMida, no more Ring0 by

deroko

12. WTM Register Maker v2.0 case
study by tHE mUTABLE

13. Call for Papers

Editor: Shub-Nigurrath

1. Forewords

Finally fime has come to publish the second issue of our little eZine. The first
number went well, so unexpectedly well that we decided to do a second
issue®.

This second issue has a fresh look, but what really matters, the content, is
there. We have a lot of contributions from team members as well from
friends.

We fried to cover most of the litfle requests we got on our forum, and that
were not possible to fit into standalone tutorials.

The content starts with some quite classical methods to patch programs,
written by Gabri3l, ThunderPwr and me. Gabridl will explain a practical
method on how fo add functionadlities to an already existing program
(notepad), while ThunderPwr will explain how to more efficiently use what
the resources can say. | will instead dig a little into a faster trick fo bypass
event driven nags.

Then it's time for Buzifier to explain a little about scripting with Olly, and
CondZero to explain a trick to handle an ACProtected program, a not so
widespread packer but a powerful one nonetheless. Then it's the time of
zyzygy which explains something more about Code Obfuscation methods.

Gabri3l again, will argue on a novel method of anti-debugging, based on
the NtYeldExecution while anorganix will teach how to code an Oraculum (a
serial sniffer) in Delphi.

For three documents deroko will bang our heads: a really interesting anti-
debugger ftrick, some deeper look into PEB and finally some thoughts on
recent TheMidas (plus its implementation as xADT plugin).

fHE mUTABLE then will close this issue explaining how to fool an interesting
protector, WTM Register Maker, for all skills levels.

| think there are enough goodies for another excellent issue, that will keep
you busy for few days..

But remember that next issues are also depending on your conftributions.
Send them to us!

Have phun,
Shub

PAGE 2 ARTEAM EZINE

1. The Cone of Experience, shub-Nigurrath of ARTeam

| thought to start this issue with a famous sentence usually attributed to Wiliam Glasser!, with several

variations:
People generally remember: Read f
Hear [
10% of what they read z See f
% See and Hee f
20% of what they hear T oeednt ted
E Discuss
30% of what they see & Experience
Teach
0,
50% of what they hear and see 0 20 40 60 &0 100
70% of what they say or write Riate of Retention (%)

Glasser research on leaming
95% of what they teach to others

| experience myself the truth of this sentence each time | start writing a tutorial; this can perfectly explain
in my humble opinion why we do them! Moreover perfectly fits with our motto:

| hear and | forget, | see and | remember, | do and | understand

Since the last issue a lot of interesting things happened to the team. First of all the third birthday of the
team: 3 years on the scene and sfill kicking! Good!

Secondly, we launched the new site: EJ12N completely on his own developed if, starting from the
graphic up to the code. He wanted to do the best accessible and nice site of the reversing scene and |
think he hit the target.

We spent a lot of evenings/nights talking on what to add and how to solve some issues and so on. The
result is under the eyes of everybody!

v Mobile version coming soon for all our members who would like to access the site on handheld
devices.

v AA Accessibility: W3C WCAG (Web Content Accessibility Guidelines) and Sectfion 508
(section508.gov). This is essentially equivalent to the AA Accessibility level defined by the W3C.

v eline will probably be available to read online and/or download plus a couple of other stuffs...

v' Tutorials system will get finished since right now we still have fo implement key features such as
search and couple other features like RSS. After this we will most likely want to enhance it and ask
our members for suggestions.

Usually, because Glasser only reported it from another author, Edgar Dale author of The Cone of
Experience (http://schoolof.info/infomancy/2p=230)

http://schoolof.info/infomancy/?p=230

ARTEAM EZINE PAGE 3

v IRC Live Chat applet in the IRC section. Maybe this way we get more people to actually go in and
chat. There will be stats in forum and site for this so users know who's in the channel.

v Latest X Stats — It will keep you informed of latest forum posts, latest tutorials submitted, latest tools
released and well you get it latest everything happening with the site.

v Tools section. — This is still being thought of but we do have something in mind like hosting most useful
RCE tools and such with of course author’s permission.

v' The RCE Links section will *not* be a link farm but it'll be more like a guide to guide users to many
other RCE resources and sites which might be worth to visit.

v' Beginners Section - We are thinking to launch a whole new section for beginners which will include
video tutorials for beginners such as the ones from lena (with permission of course), our own video
futorials, and many other stuff which will be only aimed at beginners. Videos in these sections will
most likely be available to watch online or download.

v" And a whole lot more you guys will see in the near future.

| forgot something? Ah, yes: new members, new futorials, .. but | wrote too much and it's time to stop it
here! Have a good reading!

Disclaimers

All code included with this futorial is free to use and modify; we only ask that you mention where you
found it. This eZine is also free fo distribute in its current unaltered form, with all the included supplements.

All the commercial programs used within the different papers have been used only for the purpose of
demonstrating the theories and methods described. No distribution of patched applications has been
done under any media or host. The applications used were most of the times already been patched, and
cracked versions were available since a lot of time. ARTeam or the authors of the papers cannot be
considered responsible for damages to the companies holding rights on those programs. The scope of
this eZine as well as any other ARTeam tutorial is of sharing knowledge and teaching how to patch
applications, how to bypass protections and generally speaking how to improve the RCE art. We are not
releasing any cracked application.

Supplements

This eZine is distributed with Supplements for each paper; the supplements are stored in folders with the
same title of the paper. Almost all the papers have supplements, check it.

Verification

ARTeam.esfv can be opened in the ARTeamESFVChecker to verify all files have been released by
ARTeam and are unaltered. The ARTeamESFVChecker can be obtained in the release section of the
ARTeam site: http://releases.accessroot.com

Table of Contents

1. The Cone of Experience, Shub-Nigurrath of ARTEAMccuiiiieiiieceeeeeeeeee e r e ereae 2
WV IITIC O ION ettt bbbttt et a e bt e bt e bt s bt b et b et et e st eat e bt eb e sbeeb et e st et et et eneeneebens 4
1 Adding New Functionality to Old Software, Gabri3l of ARTEAMc.ccvievierieieceereeteecteeeee et 5
2 Patching by using resource, ThunderPwr of ARTeam

3 Patching Event Driven Nags, Shub-Nigurrath of ARTEAMc.eceeiiieieiieeceeeee e
4, Writing OllyDbg Scripts, Buzifer of Team RESURRECTION.......cccuiriiriirieiieierieeiesieeee st sse e eeesvessesseeneas
5. Utilizing Code Injection on an ACprotected application, condzero of ARTeam
6
7
8
9

CodE ODFUSCATION, ZYZYQY victriieiteeieeteeteeteeteett ettt ettt te et st b te e s e s veesbaeteessesseessasssessesseseessaseessensens
Testing for OllyDbg Using NtYieldExecution, Gabri3l Of ARTEQMccvieieviieieriieieeeeeeseee e
Coding a Serial Sniffer (Oraculum), anorganix of ARTeam

. Ring 3 debugger detection via INVALID_HANDLE exception, deroko of ARTeaMcccccvveevenenennne 55
10. PEB DIl Hooking, a novel method to hook dlls, deroko of ARTEAM.......ccveevieieviiecienieieceeieeeee e 58
11. TheMida: no more Ring02, deroko of ARTEAM.....ccceevviecienerieeriieieienne

12. WTM Register Maker v2.0 case study, tHE mUTABLE
13. ARTEAM €ZINE #3 CAll fOr POPIETS...cuviviirieieeteeteet ettt ettt ettt et eveerse s e e aeebeersesseeasessenseessensens

http://releases.accessroot.com/

- r
ARTEAM EZINE PAGE 5

1. Adding New Functionality to Old Software, Gabri3l of
ARTeam

1. Abstract

The goal of this paper is to add a new feature to Notepad that will allow us to, with the click of a menu,
add predefined text to the file we are working on. There have been other articles that deal with adding
functions to notepad2:3.In this paper, we are going to examine an old project with new tools. Instead of
using a code-cave, as the referenced papers do, we are going fo instead create a dynamic link library
to perform most of our functionality for us. This will give us an easier and quicker way to write the new
functions. It will also allow us to develop future updates to our notepad by simple rewriting and
redistriouting the DLL.

2. Adding a New Menu Item to Notepad

The first obstacle we face is how to edit the menu of a closed source, compiled executable. To know
how to proceed we need to understand how windows software is compiled. Most windows software
today contains both executable code and resources. The resources of an executable include icons,
dialogs, music and menus. When a windows program is compiled, the executable code of the program
is translated to machine code and stored in one section, while the resources the executable uses are
stored in another. Because resources are not executable code most compilers store them as plain text
representations.

Here is an example of compiled code within Notepad when viewed by a hex editor:

oooolDoo|(o0s1 ESES 7CO0 5402 0100 0038 355C
ooooiDlo 010F EE

ooooiDzo)

oooolD3o

oooolD4o

00001050 by
00001De0 |(DeeA O1ES 7906

Image 1.1- Compiled Code

Here is an example of the resource section of Notepad when viewed in a hex editor:

0O00A3ED 2E00 Z2E00
0000AIT7O | RY00 GEON 7400
0000A38E0 4 0 nea
0000&390 ([oooo soon
0000ASAD M oooo 1o0o
J000ASBO | oooo 190o
[ENIMIRI - 400 AFO0 0900 4300 7400
0000A3DOD oooo
Image 1.2 - Resource Section

The resources are not packed or altered. This means we have access to all the resources that the
program uses in one location. Many programs exist that allow us to edit the resource section of an
executable. | am going to use an open source editor called XN Resource Editor4 but any resource editor
will work.

Open Notepad in your resource editor and you will have a better understanding as to how resources are
included in an executable.

2 Razzia's Tutorial for Crippled Programs: www.woodmann.com/fravia/razzcripp.htm

3 How to Extend Notepad's Functionality by Adding Code to Caves:
http://www.woodmann.com/fravia/defiler notepad.htm

4 XN Resource Editor: http://www.wilsonc.demon.co.uk/d10resourceeditor.ntm

http://www.woodmann.com/fravia/razzcripp.htm
http://www.woodmann.com/fravia/defiler_notepad.htm
http://www.wilsonc.demon.co.uk/d10resourceeditor.htm

ARTEAM EZINE

File Edit Yew Resource Menu Help

BESEITNE-8: ¢
=k [Menu Caption &File m Edit Faormat Wiew FE
Sharteut {Mone)

: & English (United Stat.. | |p 0 Dlew Ctrl+N
- = Dialog Erablid e Open... Cir|+0)
FH 7 String Table Checked ek Save Ctrl+5
B [Acceleratar Sawve As. .
E} = leon Group
" h Wersion Page Setup...
B [XP Theme hanifest Print... Crl+P

Exit

Image 1.3 — Notepad within a Resource Editor

The resource editor allows us to view and edit all the resources included within Notepad. Each resource is
nicely arranged within a folder system. If we wanted to edit the icon's we could choose the Icon Group
folder and browse down to the icon we wished to change. We are going to open the Menu of Notepad.
Browsing down we find there is only one menu within notepad, and that is the one we want are going to
want to edit. Before we can edit the menu, we need to understand how menus work.

When notepad is idle it is operating in a loop. This loop waits for input from the user. When input is
received it generates a message with information on what type of input was received. Depending on
the input Notepad responds accordingly. This is called message handlings- When notepad is informed
that a menu item has been selected it is also informed of the ID number. That way notepad can operate
differently depending on what menu item was selected. Each menu item usually has a distinct ID
number. For example the ID number for the Paste option in Notepad is 770.

Caption &P aste Eile WOl Format Wiew Help

Shorteut Citrl+4

D 70 Unda Crl+Z

Enabled False & Gt

Checked False i it
By L5 7 o
[Delete e

Image 1.4 — ID Number for Paste

We have learned two important things here. First, we know that when we create 2 new menu items we
can give them distinct ID numbers to help determine how they are handled. Second, we know that
somewhere within notepad, there is a routine to check the ID number and redirect to the according
function. We will need to find that routine and modify it to redirect to our own functions when it receives
the ID number of our new menu items.

A new menu how needs to be added, | will call my menu “QuickText”. Within that menu we will create 2
new menu items called "QuickText1” and “QuickText2. Each menu item will have a unique ID number
assigned to them.

First lets add the QuickText menu. Inside XN Resource Editor browse to Notepads menu. Select the View
menu, right-click and select Add Item After. This will create a new menu item after View and before
Help.

L, PN

Add Item Before Ins

Add Item After Shift+Ins
Add Child Ttem k
Delete Item Del

Image 1.5 - Adding a New Menu

5 Windows Message Handling: http://www.codeproject.com/dialog/messagehandling.asp

http://www.codeproject.com/dialog/messagehandling.asp

ARTEAM EZINE PAGE 7

Once the new menu is created we need to ftitle it. The fitle of the menu is created by modifying the

Caption.
Caption QuickText
Shorteut (Mone)
1D Q
Enabled True
Checked Falze

Image 1.6 - Modifying a Menu Caption

Now that the menu has been created we can add our menu items. The menu items are called Child
ltems. We add child items by selecting the QuickText menu and right-clicking. In the new menu that
comes up, select Add Child Item.

Add Item Before Ins
Add Item After Shift+Ins

Delete Ttem Del

Image 1.7 - Adding a Menu Item

The new menu item will need a caption, and it will also need a unique ID number. ID number needs to
be different then that of the other ID numbers already assigned to menu items. | used 55 for QuickText1.

Caption QuickText!
Sharteut {MNone)

10 55
Enabled True
Checked Falze

Image 1.8 — Assigning the ID Number

Following the same steps we can add another menu item called QuickText2. | assigned that menu item
the ID number 66. Save the modified Notepad.exe as something such as Notepad.QuickText.exe.

We should now have a new Notepad, with a new menu and two new items. You can run notepad and
select either QuickText option, but you will notice that nothing happens. This is because the message
being passed to Notepad's message handler has an ID value that is not being handled. Our goal now is
to locate the message handler so we can find where the ID value is tested, and how we can redirect the
function.

3. Locating the Message Handler

The next tool we will use is Ollydbgé- We will be using it fo analyze the executable and confrol program
execution. This will allow us fo find the message handler and pinpoint where the ID value comparison
takes place. Open Notepad.exe within Ollydbg. The program will load and we will be at the Entry Point
of the executable.

¥ &A 7d FUSH 7@
BlOATZoF| . 62 92188081 | PUSH notepad. 31661595

Giea7s04| > ES BFR18866 | CALL notepad.@iBE7SES

@18E7309| . 330B WOR EEX, EBX

@1ea730E| . B3 FUSH EEX BHodule =3 NULL

@1@a72AC| . 3B30 CC1@@6@| MOU EDI, OWORD PTR DS:[<EKERMELSZ.G=tHa [KERHELSE.EEtHDduleHandleH
@18673EZ| . FFO7 | GALL HEAR_EOT GetHodu [eHand e

Image 1.9H: E—ntry Point of Notepad

6 Ollydbg: http://www.ollydbg.de

http://www.ollydbg.de/

PAGE 8 ARTEAM EZINE

Creating a Message Loop

The system automatically creates a message queue for each thread. If the thread creates one or
more windows, a message loop must be provided; this message loop retrieves messages from the
thread's message queue and dispatches them to the appropriate window procedures.

Because the system directs messages to individual windows in an application, a thread must create at
least one window before starting its message loop. Most applications contain a single thread that
creates windows. A typical application registers the window class for its main window, creates and
shows the main window, and then starts its message loop — all in the WinMain function.

You create a message loop by using the GetMessage and DispatchMessage functions. If your
application must obtain character input from the user, include the TranslateMessage function in the
loop. TranslateMessage translates virtual-key messages into character messages. The following
example shows the message loop in the WinMain function of a simple Windows-based application.

We are going to begin by locating the Message Handler Loop. Take a quick look at how the message
handler loop is defined in the MSDN?7:

By examining this definition we gain some valuable information. We know that within a standard
message loop we are going to find 3 distinct APl calls: GetMessage, DispatchMessage, and
TranslateMessage. The GetMessage API function retrieves a message from the message queue.
TranslateMessage is performed if the message from the queue is a key-press, TranslateMessage then
interprets the ASCIlI character represented by the keyboard key. It then adds that character to the
message queue. Finally, DispatchMessage sends the message to the executable's message handler
where the program reacts accordingly. We can use these 3 API calls to find where our message loop is
located, and subsequently, our message handler.

Within Ollydbg, right-click inside the code frame and select Search For. In the new menu choose All
Infermodular Calls. Ollydbg will then search the executable for all the APl calls made from within
Notepad.exe, a new window will open with the results of that search:

fddrezs | Oisaszembly |Destinatinn

H1BB5E12| CALL HEAR DWORD FPTR D5:[<%KERHEL3Z.5etL{ KERHELZZ. SetLastError
H1@8B5E25| CALL HEAR DWORD PTR DS:C[<%G0I32.S5tactDod GOIS2. StartDochl
H1885E2F | CALL MEAR DWORDO FPTR D5:[<&%KERMEL3Z.GetL{KERMELZZ. GetLastError
H1@B5BCS| CALL HEAR DWORD PTR DS:[<%KERHMEL3Z2. letr| KERMELZZ. lstrlenl
§1885E0&| CALL HEAR DWORD PTR DS:[<%USERZ2.GetWind USERZZ. GetllindowLanall
Bi@EsC14| CALL HERF OWORD FTR D5:[<&msvcrt._snwpr| msuvcet . _snwprintf
H1@B5C2C| CALL HEAR DWORD FPTR DS:[<&USER3Z2. SEtDlg USERZ2. SetDlaltemTentll
B1886Ce3| CALL MERR DWORD PTR DS: [<2G0IS52.StartPa) G0IS2, StartPage

Image 1.10 — API Search Results

In the Search Results window, press the Destination column header, which will sort the results by the API
destination. Scroll down until you find DispatchMessageW. That was one of the API functions included in
the Message Loop description. Choose the first instance of DispatchMessageW and double-click on it.
You should be located here now in the code frame:

BE; i1« pH=a
@1 GEEAE Eg FUSH ERi [e"
cigezRez|| - FFLS 981zeee| | CALL HEAR OWORDCFTR. DS [EUSERS2ITESNE L Trans latetlezzage
oioaznas|| o B04E EB LER EAX, DWORD FTR $5: LEEF-281
aieaznee|| - c@ FUSH ERAf ' Itpngg
@ieezAEC | o FF1S 941zoee | CALL HEAR OWORD FTR DS:[<&USERSZ.Dispa LDizpatchMes=agell
aleezAlz|[> 56 FUSH ESI
@loazAls|| o Se FUSH ESI
oigezAid|| - D45 EB LEA EARZ, DWORD FTR $5:[EBF-281

Image 1.11 - Message Loop

Look above DispatchMessage and you will see TranslateMessage. If you were to run the program and
break at CALL NEAR EDI, located below DispatchMessage you would find that it is our call to
GetMessage.

We have found the location of our message loop. The next goal is to find the comparison routine of our
ID number. Referring back to how the message loop works we know that Dispatch Message sends the
current message to Notepad's message handler. If we can stop the program as it is executing
DispatchMessageW we can use it to locate Notepad's message handler. Begin by setting a breakpoint
on the CALL to DispatchMessageW, do this by selecting the CALL to DispatchMessageW and pressing F2.
Now when we run Notepad and it enters the message loop we will stop execution before the message

7 Using Messages and Message Queues: http://msdn.microsoft.com/library/default.asp2url=/library/en-
us/winui/winui/windowsuserinterface/windowing/messagesandmessagegueues/usingmessagesandmessa

gegueues.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/windowing/messagesandmessagequeues/usingmessagesandmessagequeues.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/windowing/messagesandmessagequeues/usingmessagesandmessagequeues.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/windowing/messagesandmessagequeues/usingmessagesandmessagequeues.asp

ARTEAM EZINE PAGE 9
s

handler is called. Make sure you have your breakpoint set and press F? in Ollydbg to run Notepad. Wait
a few seconds and we should stop execution here in our Message Loop:

GlogzaEs|[. BDAE E@ LEA EAX, OWORD FTR S5f [EEP-2@]
aloazpeel] . S@ PLSH ER: [Eiz2
. FF15 2412@0@ | CALL MEAR DWORD PTR OS:[<alSER32.Oispa LOizpatchiessagel
ERTEECTE | - PLSH ESI
aiaaza1z] L Se PUZH ESI
aioazai4|] o 204s E@ LEA EAX, DWORD PTR S5:[EEP-2@1

Image 1.12 - Stopping Execution on DispatchMessageW

We are now stopped at our CALL to DispatchMessageW. To find the message handler we are going to
use these facts to our advantage:

DispatchMessageW calls our message handler

Our message handler is inside Notepad

As the callis executed we will leave Notepad's memory space and enter User32.dll
We will have to re-enter Notepad to execute the message handler

What we are going to is step into the CALL DispatchMessageW, which will take us outside of Notepads
memory. We are going to then set a breakpoint when the code section of Notepad is accesseds, this will
stop execution when we re-enter Notepads memory space. When execution breaks it is because we
have returned to notepads message handler. We will be located right at the beginning of the message
handler.

Press F7 to step into DispatchMessageW and place ourselves in User32.dll. Now we need to place our
breakpoint on Notepad's code section. In Ollydbg, click on the View menu, in the drop down menu
select Memory.

view Debug Plugins Options A new window will open that displays the memory for this process.

T AL In the Owner column of the memory window you will see the name

s of the executable that resides in that memory space. In the

beginning of this paper we discussed that an executable stores

w different data in different sections. Traditionally executable code is
Fl=EIE

T stored in one section, while resources are stored in another. In

Ollydbg's memory window the Section column displays the different
sectfion names for each of the executables sections. Locate
e Notepad in the Owner column and we see that Notepad has 3

o alkLi— . . .
Image 13 - View Memory named sections, and a PE header?. Often times the .text section of
an executable contains the actual code. You can verify that this is
frue for Notepad by looking in the Contains column; there you see .text contains code and imports. We
could also look at the Contains column and verify that our resources are contained in the named
section .rsrc. Back to the project, select the row that has Notepad's .text section, press F2 to set a

breakpoint-on-access for that section.

Windows

NN RNELNEIENE | DRI L N rLriw) nuuc
HETF 1 BEAH| BADE1B0E Fi i Bl
A1 HAEEEAR | AAEE 1 EAA| notepad FE header Imag| R
BEEESEEE| notepad | . teHt code, import] Imag| R
B1AE9E8AH | BADE2E0E| notepad | . data data Imag R
019085098 09809968| natepad |.rere | resources | Imad|R

Image 1.14 - Breakpoint on Memory Section Access

Now when we execute the program we will break when DispatchMessage returns to our Message
Handler located within the .text section of Notepad. Make sure you have stepped into the
DispatchMessageW call, and press F? to continue execution.

You should trigger your page access breakpoint and find yourself here in Notepad.exe:

8 A breakpoint on access to memory section can also be referred to as PAGE_GUARD. Creating Guard
Pages: hitp://msdn.microsoft.com/library/default.asp2url=/library/en-
us/memory/base/creating guard pages.asp

9 For more information on PE files and their structure: Microsoft Portable Executable and Common Object
File Format Specification: hitp://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/creating_guard_pages.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/creating_guard_pages.asp
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

—— f

41663429 2BFF MO EOT, EOT USERZ2. GetMessagell
gleas4-B F. 55 | PUSH EBP

B1AA342C1) . SBEC Mo EBF, ESF

BlaEsd4zE | . 51 |PUSH ECx

Biaaa42F] . &1 | FUSH ECx

B1AE3438(] . 56 FUSH ESI

BIBBS4SI| . 8EFS B8C |HDU ESI, DWORD FPTR 55:[EBP+C]

Bl883434|] . S3FE 1C CHMF ESI, 1C Switch [cases 2..3881)

Image 1.15 - Notepads Message Handler

We have located the beginning of Notepad's message handler. Within this section of code Notepad
compares the type of message it needs to handle and takes appropriate action. Before we can
continue we need to know what type of message is sent to Notepad when we choose a menu item. In
windows there are over 200 types of messages.10 A few examples of different types of messages:

WM_CREATE

your window receives this message only once, when it is first created. Use this message to perform tasks
that need fo be handled in the beginning, such as initializing variables, allocating memory, or creating
child windows (buttons and textboxes).

WM_PAINT

This message indicates that it is time for the program to redraw itself. Use the graphical functions to
redraw whatever is supposed to be on the window. If you don't draw anything, then the window will just
be a boring white (or grey) background, and nobody likes that!

WM_COMMAND

This is a general message that indicates that the user has done something on your window. Either the
user has clicked a button, or the user has selected a menu item, or the user has pressed a special
"Accelerator" key sequence. The WPARAM and LPARAM fields will contain some descriptions on what
happened, so you can find a way to react to this. If you do not process the WM_COMMAND messages,
the user will not be able to click any buttons, or select any menu items, and that will be very frustrating
indeed.

WM_MOUSEMOVE

This message indicates that the user has moved the mouse. This message is posted to a window when
the cursor moves. If the mouse is not captured, the message is posted to the window that contains the
cursor. Otherwise, the message is posted to the window that has captured the mouse.

Windows has fried fo accommodate every type of message your program would need. But obviously
you want to know more than if a button has been pressed or a mouse has moved. You need to know
what has been pressed or where the mouse moved to. The message WM_MOUSEMOVE is not enough
information to tell you what took place when the mouse was moved. That is why these windows
messages also carry parameters. Each message can carry two parameters wparam and Iparam. The
parameters of a message help to specify what exactly happened during an event. For example, If you
opened an executable and moved your mouse, Windows will send the executable a WM_MOUSEMOVE
message. The message will also contain the wparam and Iparam parameters. wparam carries the
keyflags, which allows you to see if a mouse button was held down during the mouse move. Iparam
carries the x and y position of the mouse telling you exactly where the mouse is on the screen.
Parameters are also used when dealing with buttons and menu items. When a button or menu item is
pressed Windows sends a WM_COMMAND to the executable. This WM_COMMAND stores the ID number
of the button or menu item in the wparam parameter.

We have a better understanding of messages and message handling, now we can return to locating
where notepad compares our menu ID number. We know that when our menu item is selected it sends a
WM_COMMAND message. We also know that our ID is stored in the wparam parameter of the message.
So first we will fry and locate where the program handles the WM_COMMAND message.

You should still be at the beginning of Notepads message handler in Ollydbg. There are different ways for
programs to handle the actual messages but the most common way is to use a switch.!' A switch is a
programming method that evaluates a variable and performs an action based on the variable's value.
The action performed is known as a case. Let's say we have a program that takes the number of the
month and we want to return the name of the month. Using If-Then-Else statements we could write it as
such:

10 List of Windows Messages: http://wiki.winehg.org/List Of Windows Messages
11 C++ Switch Case Statements: http://www.cprogramming.com/tutorial/lesson5.html

http://wiki.winehq.org/List_Of_Windows_Messages
http://www.cprogramming.com/tutorial/lesson5.html

ARTEAM EZINE

PAGE 11

IF month = 1
print “January”
ELSE
IF month = 2
print “February”
ELSE
IF month = 3
print “March”

Or it could be written using a switch statement:

Switch(month)

Case 1: print “January”
Case 2: print “February”
Case 3: print “March”

The switch statement is a much more efficient and aesthetic solution. Because of this many programs use
the switch statement to evaluate and handle messages. Using Ollydbg we can see the Notepads switch
statement for handling messages. Scroll down from the beginning of the message handler and you will

see:
B1@a3430|] . 56 FUSH ESI
AiEas431|) . 8BY5 BC Moy ESI, DWORD FTR S55:[EEBF+C]
81863434 S3FE 1C CHP ESI, 1C
B1EE2427 57 FUSH EDI
Blaaz43s &H B3 |FUSH &

Image 1.16 — Switch Statement in Notepad

Switch (cases 2..8081)

This is the start of the switch statement that handles all the window messages. Using this switch we can
locate where Notepad evaluates WM_COMMAND. Highlight the line that says Switch (cases 2..8001) and

right-click. Choose Go-To from the right-click menu and in the new menu choose More Cases:

Mew origin here Chrl+Gray * I
Go ko 3 Origin %
Follow in Dump 3 Previous Mirs
Wiew call tree Chrl+k Expression Chrl+G
Search For 3 Previous procedure Chrl+Minus
Find references to 3 Mext procedure Chrl+Plus
igw 3
Default case

Copy to executable 3

; Case 2 (WM_DESTROY)
Analysis 3

Case 5 (WM_SIZE}
Detach Process Case 6 (WHM_ACTIVATE)
Case 7 (WM_SETFOCUS)
Case § (WM_KILLFOCUS)

Process Patcher

Ayl Case 10 (WHM_CLOSE)
AsmzClipboard 3 Case 11 (WM_QUERYENDSESSION)
Bookmark. 3 Case 1A (WM _WININICHANGE)
Bookmark. 3 Case 1C (WM_ACTIVATEAPP)
Copy ko MNotePad Case 111 (WM_COMMAND)

Rur Scripk 3

Image 1.17 - Locating Cases within Ollydbg

A new window should open within OllyDbg allowing you to see all the different cases that this switch

handles:

ARTEAM EZINE

2 (wM_DESTROT) =
5 (wM_SIZE]

6 (WM _ACTIVATE]

7 [wM_SETFOCUS]

8 (wM_KILLFOCUS)

10 [wM_CLOSE]

11 fM_QUERYENDSESSION]
1 [M_WININICHANGE)

1C [wh_ACTIVATEAPP)

111 [wh_COMMAND)

112 [wh_5YSCOMMAND)

116 [wh_INITHENL)

117 [wh{_INITMENUPOPLUF)
233 [wh_DROPFILES)

19 [wh_APPCOMMAND)
8001

-
Follow I Cancel I

Image 1.18 - Viewing Cases within Ollydbg

We can see that Case 111 is WM_COMMAND. Highlight the line and press Follow to go directly to the
beginning of Notepads handler for WM_COMMAND. You will find yourself here in Ollydibg:

a1ea3sCcy|| » %3630 3895080 CHP EDI, DWORD PTR DS:[18995381 Case 111 (WHM_COMMAMDY of switch @l8@83
@laazaco|| .~ 75 4C JHZ SHORT notepad. B1BEI31E
@1@R22CF || . 8B45 1@ MOL ERKX, DWORD PTR SS:[EEF+181
Alamzs0z|| . ClES 18 SHR ERX,

B1aaz305|] « &5:30 BEAS | CHFE Ak, SBE

a1aaz309| | «~ 74 BG JE SHORT notepad.@10832E1
Giaazz0e|l « &6:230 8165 | CHE AR, SE1

Alamzs0F || .~ 75 3R JHME SHORT notepad. A1EA331E
ElEazsEL || » S350 4893868 | CHE DWORD FTR DS: C18895451, 1
G18a33ES|| .~ 75 BF JHZ SHORT notepad. B1BEISFD
E1EEZ2EA|| « CPBE 42992860| HOU DWORD FTR OS:[i6@92421, 2

@ilEEzzF4 | .~ E9 C4FEBFFFF | JMP notepad.@lBaz24B0D
B1EAZEF2) > &2 18l8EaEE | PUSH 181@8

o1oa32FE(| . FF3S E49@@@@| PUSH DWORD PTR DS: [1969854]

Gioazood|| , FF3E 4coeeen) PUSH DWORD PTR DS: [186984C]

aiGaz20n([> FF3E 2898860) PUSH DWORD PTR DS: 18699361 hOwner = BEZIAZ2E ("Untitled - Notepa
p1e6e2916(. FF15 £212060| CALLYHEAR OWORD PTR D$:C<tUSERSZIMesEEs Lnes=ageBoull

B16a3316(.~ ES REFEFFFF | JIF notepad.@18@E34ED

eioaz2ie(| > 5S¢ FUSH EO1 Arad

e1eaz21c|| . FF7s 18 PUSH OWORD PTR S5: [EBP+1@] Ara? = DEBREEES

a1eaz2iF (| . FFPE B8 PUSH DWORD PTR S%5: [EBP+E] Arg

e1062922|| . ES_EBFEFFFF | CALL notepad. BIBGZEST notepad. B1BEZEST

mage 1.19 - WM_COMMAND Handler in Notepad

Examining the code there is no noticeable functions that look as if they are comparing a button or menu
ID number. We do, however, see that there are 2 calls within the WM_COMMAND case. We have a call
to MessageBoxW and a call to Notepad.01002B87. Now keep in mind your offsets may look different for
the second call, but it does not change the call. Using common sense, since the comparison is not
taking place among the code we are in currently, and the comparison obviously is not taking place
within MessageBoxW, we can assume that within that second call is probably where our ID number
comparison is taking place.

Highlight the second CALL and right-click. In the new menu that opens up choose Follow. That will step

info the call to Notepad.01002B87.
Mew arigin here % Chrl+Gray *

Go ko »
Follovs in Dump 3
Yiew call tree Chrl4k

Image 1.20 - Follow a CALL in Ollydbg

After following the CALL within Ollydbg you will find yourself at the beginning of a new function:

BlEEzBa7 |\ rs SEFF Moy EDI, EDOI

Bleazes?(l « 55 FUSH EEF

A1EEZEEA(] . SBEC [oy EBF, ESP

BlEEzESC|) « S1EC cBB@zassl SUE ESP, 268

gileEzesz) « Al B42c@E0l | MOW EAK, DWORD PTR OS: [1889664]
B18@2E97|] . 8BEE B8 HMaw ED, DWORD PTR 55: [EEBP+E1

Image 1.21 - Function Beginning

Take a quick look at the code within this function. Scrolling down we see that we are quickly presented
with another switch statement. We see switch (cases 1..303) in the comments section to the right of one

ARTEAM EZINE y
~

PAGE 13

of our code locations. Note, if you do not see the switch comment then press CTRL+A to analyze the
code.

BiEE2EES|] « ©&6:AB STOS WORD FTR ES:[EDI]

B1EE2EEH|] . BFE7YD BC MOUZ= EDI, WORD PTR S5: [EBF+C]

Bi@az2EEE|l . 23FF 48 CHP EDI, 4@ Switch (cases 1..383)
BlEnzEC] 2995 FBFOFFF| MOU OWORD PTR S5:[EBP-2181, EDX

B1EEZECY|] «~ BFEF FPEcE06) J5 HOTEPAD. 31883206
@i@azecholl .~ BF24 DEGSE0El JE HMOTEPAD.818832RE

Image 1.22 - Switch

We need to find out more information about exactly what numbers this switch is comparing. As we did
before, highlight the first line of the switch and choose Go-To, then select More Cases. We are presented
with a new box that contains the list of the cases for this switch. Scroll to the bottom and look at some of
the cases. The first number you see is the hexadecimal number; the next number in parentheses is the
decimal number equivalent. Do any of the numbers look familiar?

21 (33)

40 (64.)

41 (5.)

300 [768.)

301 (769,

302 (770

303771 =

Image 1.23 - Switch Cases

Hopefully you recognize the number 770. If you did not recognize the number refer back to [Image 1.4].
770 is the decimal value for the Paste menu item in Notepad. If we were to look through the resource
section again we would find 768 is the ID number of Cut menu item, 769 is the ID number of Copy, efc...
This means that we have successfully found Notepads ID number comparison function and we also have
located the switch within that function that compares our ID number.

Write down the location of the comparison routine we will need o jump back to this location later in the
paper. In my case the comparison function begins at 1002B87 your address value may differ but refer to
[Image 1.21] to verify that the code is the same. We will also need to write down what register is being
used within our switch. This will let us know where our ID number is being stored. We will use that register
when we write our DLL. Scroll back to the beginning of the switch and we find that the register that is
being compared in our switch is EDI.

gioezEEs|] . EE:AE STOS WORD PTR ES LEDI]
fimEeEEA|| - BFEFFD &G HO PTR S5: [EBP+C]
B18E2EEE(| . S2FF 4@ uimm Switch [cazes 1..2@3)
B1EEZED] £99E FEFDFFF| AUV OWORD F 1R S5: [EEF-2181, EOX

B1aazeCy (| .~ BFEF Fo@e@am) A5 MOTEFAD.S1002205
gleazecoll .~ BF24 DE@SEEE!JE HOTEFAD. 818622AE

Image 1.24 — ID Number Comparison

We have now found the location of the comparison function and we know what register is being
compared. The next step will be to redirect the function to account for our two new menu items. We
could redirect to a code-cave and hard-code all values and variables within Notepad. We are not
going to take that approach; instead we are going to develop a DLL. Notepad will be modified to load
the DLL and then we will redirect our ID comparison function to another function within the DLL. Before
we can confinue within Notepad we need to start developing our DLL

4. Developing the QuickText DLL
4.1 Planning

Developing a DLL can be intimidating for someone new to the world of reverse-engineering and coding.
In this section we will determine how our DLL needs to function. We will then develop a flowchart to show
the desired execution. Finally | will walk you through creating your QuickText DLL. To begin we are going
to write a simple flowchart to demonstrate how our DLL is going to work. Even if you do not know how to
write a DLL this will help you understand how the code is functioning. The following is our desired
execution of Notepad and the QuickText DLL. The Red objects on our flowchart show the modifications
to Notepads execution. The dark blue objects illustrate the function of our DLL:

ARTEAM EZINE

Motepad Starts and
Waits for User Input YES

I

—E\Jo Input

User Input

Data was Wh_COMMAND

Some Other Type of Input

L 4
Continue
Execution N

Image 1.25 - Simple Flowchart Representation of Desired Notepad Execution

First Notepad begins

Next there is a modification within Notepad that will load our Quicktext DLL

Execution will continue until Notepad receives a WM_COMMAND message

At that point Notepad has been modified to call a function within our QuickText DLL

v' Within that function EDI is being compared to our two Menu Ids

v'If EDI equals one of our Menu IDs then we will paste the string corresponding to that menu
info Notepad

v' Otherwise we will return to Notepad and allow it to continue.

We cannot modify Notepad yet because we do not have a working DLL to load or redirect to. First we
need to focus on how to achieve our desired DLL functionality. Writing a DLL will not be that hard, we
can use a simple skeleton to help us develop it. However, within our QuickText DLL we are going to need
fo create a function that will compare EDI and paste the specific string info Notepad. | will be calling
that function QuickPaste. That will be the function we have Notepad call if it receives a WM_COMMAND
message. The next flowchart is an illustration of loading the DLL and the execution that needs to take
place within the QuickPaste Function:

EDI is Equal to QuickText1
Menu ID

EDI does not egual
CuickText1 Manu 1D

EDI is Equal to QuickText2
EDI does not egual Menu ID

CuickTexi2 Menu 1D

Image 1.26 — Flowchart Representation of QuickText DLL

ARTEAM EZINE PAGE 15

Examining this illustration gives us a better idea of how we need to develop our DLL. The chart at the top
shows how the DLL loads info memory. Below that we find the execution flow of the QuickPaste function.
If you noticed | decided to use the clipboard to accomplish our goal. If the value of EDI is equal to one
of our Menu ID's then we open the clipboard and place the string assigned to that Menu ID into the
clipboard. Before returning to Notepad | specifically placed the value of the Paste Menu ID into EDI.
When we refurn Notepad will execute the Paste function placing the string from the clipboard into it's
own text field. That cuts down on the amount of code we have to write. Working with the clipboard in
windows is not necessarily trivial, there isn't just a single API call you can use in this case. Because the
clipboard can store images, text, and files it becomes a little more complicated. Below are the actions
we need fo take along with their corresponding Windows API functions:

Allocate memory within our process to store our string GlobalAlloc
We then need to lock the memory so Windows does not discard if. GlobalLock
Next we move our string into the allocated memory N/A

We can now open the clipboard to be used by Notepad OpenClipboard
Remove anything that was formerly in the clipboard EmptyClipboard
Set the clipboard data to TEXT and move our allocated memory into the SetClipboardData
clipboard

Now close the clipboard so other processes can use it CloseClipboard
We then unlock our allocated memory so it can be deleted GlobalUnlock

We have now spent some time outlining and planning how our DLL will work. We know the flow of
execution and the desired functionality. We have established the API functions we will need to use, and
are finally ready to begin coding our DLL.

4.2 Coding

If you are completely new to ASM programming | will briefly walk you through your assembler and IDE.12
There are many different tutorials out there to help you learn assembly, If | were to explain the basics of
the language | would be repeating what is already available. | can recommend two great series of
tutorials to help you begin learning ASM13.14, For this paper you only need to know enough to install the
IDE and assembler. If you have read and understood the flow of execution so far you will be able to
follow along with the commented ASM code.

We will be using MASM3215 as our assembler language in this paper. For our IDE you will need both
RadASM v2.x and the RadASM Assembly Programming Pack. These are located at the RadASM siteé. |
recommend installing both RadASM and MASM32 to your C: directory. This will help eliminate the need to
modify library and include paths in RadASM. If you have issues with setting up RadASM to work with
MASM refer to the RodASM help file. It can be downloaded from their website.

The basics of writing a DLL in MASM are simple. Since we are coding our DLL using the RadASM IDE
(Interactive Development Environment), it will remove some of the work when coding our assembly
programs.

1. Open RadASM and select File->New Project.

2. Choose MASM for the Assembler and check DLL Project. Enter in both the Project Name and
what the Project file will be called. | named my project QuickText. Press Next to continue.

3. Do not choose a Template, just press Next.

4. For File Creation only choose ASM and DEF, and choose BAK for the Folder Creation. Press Next
to continue.

5. In the next window press Finish to begin your project.

When you press Finish you will be presented with a new project in RadASM. In the right hand pane of the
program you will see your two files QuickText.asm and Quicktext.def. Quicktext.asm will contain the main

12 IDEis defined as: Interactive Development Environment

13 Iczelion's Tutorial Series: http://win32assembly.online.fr/tutorials.ntml

14 Win32 Assembler Coding for Crackers by Goppit: http://tutorials.accessroot.com
15 MASM32: http://www.masm32.com/

16 RadASM IDE: http://www.radasm.com/

http://win32assembly.online.fr/tutorials.html
http://tutorials.accessroot.com/
http://www.masm32.com/
http://www.radasm.com/

| . ARTEAM EZINE
m.f

executable body of code for our DLL. Quicktext.def will contain definitions of any functions our DLL will
export. The large main pane in the center of the program is the coding window where you write the
assembly code.

First we need to open our QuickText.asm file in the coding window so we can begin writing the DLL.
Double-Click on QuickText.asm and that will open it up in the coding window. We have spent a lot of
fime developing the function of this DLL and have thoroughly examined how it is going to work. We have
also discovered what functions are needed to achieve our desired execution. Because of this | am not
going fo directly explain the QuickText code. | have commented every line and | recommend reading
through it. When you have read through the code, and feel comfortable that you understand how it is
functioning, you can past the source below directly into the coding window.

;QuickText DLL v1.0 by Gabri3l [ARTeam]

;Supplement to Adding New Functionality to Old Software

THH\

;Adds new functionality to a modified notepad.

;Allows interception of the Message handler for WM_COMMAND.

;Compares menu ID number against new modified numbers and acts accordingly
SHI/S

;##\ Processor definition and includes

.586
.model flat, stdcall
option casemap:none

include windows.inc
include user32.inc
include kernel32.inc
includelib user32.lib
includelib kernel32.1ib

SH#/
.data

wQuickTextl db "QuickTextl",0Dh,0Ah,0 ;Character String to Paste into Notepad
wQuickText2 db "QuickText2",0Dh,0Ah,0 ;Character String to Paste into Notepad

dBytes dw 100h ;Buffer Size for Clipboard Memory
.data?
hMem dd 4 dup(?) ;Handle to Allocated Memory
pAlloc dd 4 dup(?) ;Pointer to First Byte in Allocated Memory
.code
DLLEntry proc hilnstDLL:DWORD, reason:DWORD, unused:DWORD ;*QUICKTEXT ENTRY FUNCTION*
.iTf reason == DLL_PROCESS_ATTACH ;initialization code for when DLL is loaded
mov eax, TRUE ;put TRUE in EAX to continue loading the DLL
.endif
Ret ;Return
DLLEntry Endp ;*END OF QUICKTEXT ENTRY FUNCTION*
QuickPaste proc ;*QUICKPASTE FUNCTION*
-IF EDI==55
Mov EDI, OFFSET wQuickTextl ;1f Menu ID = 55 MOV offset of first Character

;String into EDI
-ELSEIF EDI==66
Mov EDI, OFFSET wQuickText2 ;1 Menu ID = 66 MOV offset of second Character
;String into EDI

-ELSE

RET ;1T Menu 1D does not equal 55 or 66 Return to
Notepad
-ENDIF
INVOKE GlobalAlloc,GMEM_MOVEABLE, dBytes ;Allocate dBytes of Memory to load Character
String
mov hMem,EAX ;Move the Handle of the Allocated Memory into hMem

Invoke GloballLock,EAX ;Lock the Allocated Memory

ARTEAM EZINE J PAGE 17
ad

mov pAlloc,EAX ;Move Pointer to First Byte of Allocated Memory into
pAlloc
MOV ECX,EDI ;Move offset of Character String into ECX
XOR EBX,EBX ;Zero Out EBX
Mov BL, BYTE Ptr DS:[ECX] ;Move First Byte of Character string into BL
-While BL!=NULL ;Loop while BL is not a Null Character
Mov Dword Ptr DS:[EAX],EBX ;Move Character stored in BL into Allocated Memory
INC EAX ;Increment to next Byte in Memory
INC ECX ;Increment to next Byte in String
Mov BL, BYTE Ptr DS:[ECX] ;Move next Character into BL
-ENDW
Mov Dword Ptr DS:[EAX],00 ;Move NULL into Last Byte of Allocated Memory to end
string
INVOKE OpenClipboard,NULL ;Open Clipboard for this Process
MOV EBX, Dword PTR DS:[hMem] ;Move the Handle of Allocated memory into EBX
INVOKE EmptyClipboard ;Empty old Clipboard Contents
INVOKE SetClipboardData,CF_TEXT,EBX ;Set Clipboard Data equal to Allocated Memory
INVOKE CloseClipboard ;Close clipboard
INVOKE GlobalUnlock,hMem ;Unlock the Allocated Memory
MOV EDI, 302h ;Move ""Paste' Menu ID number into EDI
ADD ESP,2 ;Balance the Stack
RET ;Return to Notepad
QuickPaste EndP ;*END OF QUICKPASTE FUNCTION*

end DLLEntry

After we have written the preceding code we need to export our QuickPaste function. This is done so
other programs, like Notepad, can use it. We do this by defining the exports in the QuickText.def file. Our
definition file needs to include two lines. We need to define the name of our dynamic library and we also
need fo declare any functions we want to export from the DLL. When a function is exported that means
it is made available to any module in the address space that wants to call it. Exporting a function will
allow us to find the address of that function by using the GetProcAddress API feature.

Below are the definitions to be included in QuickText.def:

LIBRARY QuickText ;The name of our library
EXPORTS QuickPaste ;The name of the exported function

After all the code has been entered for both QuickText.asm and QuickText.def we can build our DLL.
1. In RadASM choose Make->Build to compile the DLL
2. Output results will be displayed in a window at the bottom of the program. Your DLL will be
located in the ...RadASM/MASM/Projects/QuickText/ folder

5. Modifying Notepad to Load and Use QuickText.dll

We have finally created our QuickText DLL. Now we need to modify Notepad so it will load our DLL
during initialization. We are going to begin by redirecting Notepad's Entry Point to a Code Cave'7. That is
done by adding a JUMP at the entry point that jumps to our code cave. This jump can overwrite some
commands if needed because we can emulate them within our cave. The next step will be to load
QuickText.dll. This can be done by calling LoadLibrary and using “QuickText.dll” as the argument.
Loadlibrary is a Windows API function that is used to map an executable module, like a DLL, into
memory. LoadLibrary will look in the programs directory for “QuickText.dll” and, if the dll is found, it will
load it into memory. LoadLibrary will then return the handle of our DLL in EAX. Once our module is loaded
we need to find the location of our QuickPaste function. Windows provides another API function that
allows us to do this easily. Because we exported our function in the QuickText.def file, it is listed in the
exports section of our DLL. We can look it up using the GetProcAddess APl function. Calling
GetProcAddress and passing it the return of LoadLlibrary (which was the handle of our DLL), and the

17 Code Cave: Unused memory space within a programs allocated memory. It can be used to store
information and code without changing the size of the original program.

ARTEAM EZINE

argument “QuickPaste” will return the location of the QuickPaste function in EAX. We can then store that
address and use it in the Menu ID comparison. After we have stored the address we need to execute
any commands we overwrote with our JUMP and return to regular program execution. Finally we will
need to modify the Menu ID comparison so it will call the QuickPaste function using the address we
received from GetProcAddress.

We start by first loading Notepad.exe into Ollydbg. You will find yourself here at Notepad's Entry Point:

¥ &A 7o FIEH 78
BloEraoF| . 63 92186081 | PUSH notepad.@1061893

Gloa7eA4) > ES BFB1GEG0 | CALL notepad.@l@E7SEs

BiGETEAS| . 3308 WOR EBY, EBX

@16E73AE| . 53 FUSH _EEX Biodu le =3 HULL

Gi1oE7aAC| . BB30 CC19@08| HOW EDI, DWORD:PTR OS: [&KERNELSZ. GetHa [KERHELSE.EEtHDduleHandleH
@1e@73ez| . FFD7, _ | CALL, HEAR_EDI GetHody LeHandLeA

Image 1 27 Notepad exe Entry Point

A quick frick fo finding a code cave is by scrolling Olly's code window until we get to the last real
instruction and just see 0's.

BlOECEES] . 68 OB &0
B1PB3EEE| . FE@L O B1FE

G1EE2EES| . 5B 65 65 6B {ASCII "PeckMezzagel’, @

b -

B1EEZEFE| . 45 6E &1 &2 1RSCII "EnableWindow”, @ SEI"D” DDWH
B1EES7EC| . £a OB B0

A1ERETEG| . BEGE Ol AREE \/
BlEEETES| . 44 72 &1 7F YASCIT "DrawTestExll™, &

B19E2714| . GEE0 Ol BESS

1882716 . 43 72 65 &1 |ASCII "CreateDialogFara”

Gleparze| . 60 57 &1 ASCIT "ml™, @

BIAEEFES| . @@ O &0

BiEEIFEA| . FAEL Ohl @17h

B1EE272C| . 47 65 74 57 (ASCII "GEetWindowTextl™, @

B1807ZE| . £a OB B0

GlAREFSC] . 55 B3 45 52 1ASCIT "USER3Z. L™, @

HIWH= " 515 LE ki

B15E2742 [2lE] OB @0

1802749 =le} OB B0 i

B1BE2740 =le) OE &0 CODE CAVE

A1RASTAE 2le} OE @6

1882740 ol OB @0

1882740 e} OB 80

18027 4E =le} OB B0

A1BRGTAF =l OE 0

A1BEZFER i OE @5

1882751 2le} OB @0

3182752 =le} OB B0

A1RRGTES e OE @6

Image 1.28 - Code Cave in Notepad.exe

We see that our code cave starts at 1008747. This section is where we are going fo redirect our entry
point to. Go back to Notepad's entrypoint where we are going to assemble a JUMP. Highlight the PUSH
70 line and Press SPACEBAR. This will open the assembly window which allows us to modify the programs

code.
T en 7o FUZH 70
GibfeooF| . B3 93198881 | PUSH NOTEPAD.@1881395 Assemble at 0100739D
glo6raa4| . ES BFP1EB9A | CALL MOTEPAD.B1887568
a1pEroRg| . SO0E W0R EEX, EBR
@ipEranB| . G2 FUZH EEH
G16672AC| . BB30 CC18@ae| MOU EDI, DUORDCRTR O5:[EKER
@16E7P3E2| . FFD? CALL MEAR EDI
BloosiEs| v SEIF - OeH SHE' EHEETPEETE%BEST&WEEED
i . ;
A1EAFIEE| . SB4S 30 U ECX, DWORD PTR 0S:CEmdem 1 Fill with NOP's
@10E7PIEE| . @3CE Hon & o J
ologracal . 2133 SE4S@E@El CHP DUORD PTR OS3CECKI. 4550

Image 1.29 - Ollydbg Assembly Window

| prefer to leave a little space at the beginning of the code cave just in case | need to make some
modifications. So | will choose to jump to 1008765 instead of 1008747. Enter JUMP 1008765 info the
Assembly box. Make sure you check Fill with NOP's and press Assemble. You will see the JUMP has
overwritten PUSH 70 and PUSH NOTEPAD.01001989 with a JUMP NOTEPAD.01008765. We have now
redirected our entry point to the code cave. Your code should look like this:

2. -E9 C3138E0E | JHMP notepad . B1003FEE
L] MOF

B1BEFIAZ
B1BA73IAS 28 HOP

B1EEF3A4 > | EZ BFE18688 |CALL notepad_.B1BR7S6E
Blao73nz| . | 3308 HOR, EBY, EBY

Image 1.30 - Entry Point Redirected

We now need fo figure out what code we enter into our code cave. The code | post below is incorrect in
it's syntax but will give you the idea of what we need to accompilish in our code cave.

PUSH “QuickText.dll” ; PUSH POINTER TO "Quicktext.dll' ONTO THE

ARTEAM EZINE

PAGE 19

STACK

CALL LoadLibrary
PUSH “QuickPaste”
STACK

PUSH EAX

BY LOADLIBRARY

CALL GetProcAddress
MOV Stored_Address, EAX
STORED_ADDRESS

PUSH 70

PUSH 01001898

JMP 010073A4

; CALL LoadLibraryA FUNCTION
; PUSH POINTER TO “QuickPaste” ONTO THE

; PUSH THE HANDLE TO QuickText DLL RETURNED

; CALL GetProcAddress
; MOVE LOCATION OF QuickPaste FUNCTION INTO

; EMULATE OVERWRITTEN COMMAND
; EMULATE OVERWRITTEN COMMAND
; JUMP BACK TO PROGRAM EXECUTION

Most of this code we could enter just as it is written. However we cannot use variables and constants in
our code, like “QuickText.dll”, QuickPaste, and Stored_Address. Instead we have to define the variables
ourselves and reference their location in memory. It is simple to do, all we do is write the strings info
Notepad. When we need to reference them we just use whatever memory location they were written at.
Knowing that, it is time to start adding code to our code cave. We are going fo start by creating our two
constants “QuickText.dll” and “QuickPaste” in Noftepad. Go to the beginning of our code cave at
1008747. Highlight line 1008748 and, while holding the mouse button, down drag down to select about
15 lines below it. Once you have the lines selected, right-click and choose Binary and then Edit

T e = W G176

GIOGETZC| . 47 65 74 57 {RSCIT "Getll indowTextll™, @

GloES7IE| . 6@ OB G

01082730 . 55 53 45 52 {ASCI] "USERZZ.dLL™.@

Q16EE747 aG DB 5@

Q1685743 ag DE @@

1 GEET4S GG OE G »

61 BEET4A GG OE G

A16BET4E ag DE 6@ 3

A1EBET4C ag DE 5@ - - -
aisedrsd o9 o5 g0 Edit Ctrl+£
AB1ARET4F [OE & Modify byte Fill with 00's

61 BEETE GG OE G i

A1BE3751 (2] DB Ba Space Fill with NOPs
e -

1 BEETES GG OE Ga . Binary copy
- ’

B1BRZ7ET ag DB B0 Breakpaint k |

Q1688753 ag DE @@ .

Image 1.31 - Binary Edit

A new window will open that allows you to edit the memory you have selected. We are going to add
our first string “QuickText.dll" into our selected memory location. Type QuickText.dll into the ASCII box in

the edit menu. When you are finished press Okay.

Edit code at 01008748 x|

UHICODE | 1

V¥ Keep size

[QuickText .d11H

51 75 62 63 6B 54 65 78 74 2E 64 6C
6C BB BB BB BA AR

ak. I Cancel

H1E0E3742 (515} OB G&
H16GB2742 a8 OB B&8
A1EE874H a8 OB a8
H1G6E274E (515} OB G&
B166B374C aE OB &&
A1EEg740 ag OB &aa
H16E274E [515] OE @&
B166374F A& OB B&a
B1EE875R a8 OB a&
H1EE3751 [5]5] OB @&
H1EE27E2 515} OE &g
B1EEE75S a8 OB &aa
H1888754 (5] OB &a&
H10GE27ES aE OE @&
A1EEETEE []5] OB aa
H1EE875T Qg OB a&
H16E237E2 {515} OB G&
H18B27ES a8 DE &&a
H1EEETSH []5] OB aa
H1EE27ER [5]5] OB @&
B18GB37EC a8 OB G&8
A1EEa7E0 55] OB aa
plopsrse| 09 g 2

Imag_é 1.32 - Entering ASCII String into Memory

Once the string has been written into memory press CTRL+A to re-analyze the code. Olly will then
recognize the string and you will see it in your code window. We now need to do the same thing for the
next string “QuickPaste”. | entered the QuickPaste string starting at location 1008757, one BYTE after the
QuickText.dll. Follow the steps above o enter the QuickPaste string. Your final modification should look

like this:

o a

ARTEAM EZINE

RiBEE7FEA] . 7RE1 oW Bi7A

ElEgsrFe) o 47 65 P4 BEF (ASCII "GetWindowTextW™, @
B1E0S7IEl . B8 DB Ga

BleEsvFac| . 55 53 45 52 JASCII "USER3z2.dLL™,8
B1AEETSF [5]5] DB _Ga@

@leEsyFd4z) o E1 FE 69 62 (ASCII "BuickText.dLlL™,. 8
B1EEEFES [515] OB GE

B1EEEFEF o 51 75 &% 63 (ASCII "QuickPaste™,8
Bl1EEETES [a15] DE Ba@

H1BEETES [s15] OB b

B1EE27ES s 15] OB B@

B1EEEFEE al5] DB Ga

Image 1.33 - String Constants

We now have our two string constants written into memory, the only other thing we need to dois find a
location for our variable Stored_Address, which will hold the location of the QuickPaste function. Finding
a variable location is easy; all we need to do is determine an empty code location that we will write
information info. In my case | chose a location farther down the code cave at 1008798. No preparation
is needed to use this location as a variable. We will just use that memory location as we enter the code
info our cave. Now that we have all our constants and variables memory locations defined we can use
them in our code:

PUSH 1008748 ; PUSH POINTER TO "Quicktext.dll'™ ONTO THE
STACK

CALL LoadLibraryA ; CALL LoadLibraryA FUNCTION

PUSH 1008757 ; PUSH POINTER TO “QuickPaste” ONTO THE
STACK

PUSH EAX ; PUSH THE HANDLE TO QuickText DLL RETURNED
BY LOADLIBRARY

CALL GetProcAddress ; CALL GetProcAddress

MOV DWORD PTR DS:[1008798],EAX ; MOVE LOCATION OF QuickPaste FUNCTION INTO
STORED_ADDRESS

PUSH 70 ; EMULATE OVERWRITTEN COMMAND

PUSH 01001898 ; EMULATE OVERWRITTEN COMMAND

JMP 010073A4 ; JUMP BACK TO PROGRAM EXECUTION

This code can now be entered directly info our code cave. We do this the same way we added the
JUMP to our cave. We will assemble each line of our cave with each line of code above. Start at
1008765, select the line and Assemble. In the Assembly Box enter the first line of our code; PUSH 1008748.
Press Assemble to write the code:

HIHEESS S o bl ¢ BY kD (HSLLL "Ly

G AAZTES T NN A<semble at 01008765 |
B AE37ES a0 OB 66

Gl AET R a0 OB 66

B ABSTES £ OE 6@ |PUSH 1008748 |

EICEER] OB @6

G1AB37ET e OB @6

biogivés| oo D oo

A16627ER an O @@ I Fillwith NOF's -m Cancel |
SLagsrek oe bEan

Image 1;4 — Assembling Code in a Code Cave

Next we will Assemble line 100876A. Usually your Assembly box will remain open, if it is not open then just
select the next empty line and press SPACE to assemble. Enter our next line of code into the Assembly
box; CALL LoadLibraryA and press Assemble 8.

BiBEETES G U= N A<<emble at 01008764 x|
B1E6E7ED BE OE 86

B1A6E7ES ae OE @& -

A1GEIFEL £2 42276681 | PUSH MOTE IE.f-‘«LLILDadleraI}L"-\ j
B186275A o1} DE 6@

B1E6ETEE L2} OE B6

A1ARSTEr [c]e] ne AG

Image 1.35 - Assembling Code in a Code Cave (Continued)

Continue to Assemble each line of code until you are finished with the block of code. Your final product
should look like this:

18 A note: doing this way, the LoadLlibrary will be directly called; when saved it will be resolved with the
address of the PC on which you assembled the code. Generally speaking it is better o do it through the
import gate, otherwise will not work on different systems. We left this as a note in order to keep the
discussion clear, but you should consider it.

ARTEAM EZINE PAGE 21

.
BlEaeFzAl . 7HB1 Oy 817H
Glemerac) o 47 65 74 EF (ASCII "Getl indowTextl™,
QleEsyIe) . 898 OB B8
giogeyac) . BE B2 46 B2 JHSCIT "USER22.d4LL", 8
A1EA3747T 5] OE @@
aiE@EgP4s . 51 ¥E &9 £2 (ASCII "BwickText.dlL™. @
Bl1EEETEE [5]5] DE 8@
@18Eg7s7?| .« 51 P5 6% &3 (ASCII "GuickPaste",d@
BlERgFaz (5]5] DE 8@
B1EEEFES 5151 DE B&
B18E27E4 (515} DB B&
B1EE27eE £ 4227AEE] | PUSH MOTEPAD. 818062742 ASCII "B ickText.dLL™
B1EE82FER ES B22e7FYE |CALL kernel22.Loadlibraruf
A1EASFEF &5 EVEFAAR1 | PUSH NOTEPAD.B18RS7EY ASCII "EwickPaste™
B1EEE774 =] FUSH ER:
B18EEFYS ES AEZ45687E | CALL kernel32.GetFrocAddress
B188EFFH A2 S8EFeBs1 |MOU DWORD PTR DS:[18627931, ERH
B18887FF &H 7A@ PUSH 7@
alangral &2 92128881 |PUSH HOTEFAD. 51801292
@lemgras| -~ E9 19ECFFFF | JMP HOTEPAD. B18672A4
Bleasvee al) OB B8
aleasyac aE OB G@
A1EaaFa0n fa]s] OE @@
H1EE37EE 5] OE @@
A GASTEE GG AR G

Image 1.36 - Final Code Cave Code

We now need to save our modifications to a new executable. Right-click within the code window and
choose Copy To Executable from the right-click menu. Then select All Modifications.

Copy to executable Selection
Analysis r All modifications

Image 1.37 - Copy To Executable

[LENTETRETyEvEy

A new window will open up with a new file which has all the modifications we have made to the
Notepad executable. We need to save this file as an new exe. Right-Click in the new window and
choose Save File. A dialog box will open up asking what you would like to name the new file. You can
use whatever name you desire, | named my file Notepad.Modified.exe.

Backup 3

»
;:,ny » You can now close Ollydbg. Our Notepad is modified so it will
Assemble load our QuickText.dll. It can then find the location of the
Search for » QuickPaste function and store it in a variable to be used later.
Save file There is only one problem. If you attempt to run the modified
Go to offset Cirl+G Notepad you will encounter an error! Why2 The reason is this

Image 38 - Save new executable to command:
file

; MOVE LOCATION OF QuickPaste FUNCTION INTO STORED_ADDRESS
MOV DWORD PTR DS:[1008798],EAX

That command is writing information directly info the memory location 1008798. We are getting an error
because Notepad has set a flag in it's characteristics saying that the section we located our variable in is
not writeable memory. Thankfully this is an easy thing fo fix. All we have to do is edit the characteristics of
that section so we can write to memory. This can be accomplished with a Portable Executable editor
such as LordPE!?. Once you have downloaded and installed LordPE open it up and choose the PE Editor
button. Locate and open your modified version of Notepad. You will be presented with the executable
editor menu. Our goal is to edit the section characteristics of Notepad so we can write fo memory.
Select the Sections button to view Notepad's sections. You will be presented with a Sections Table
window.

[Section Table] i A
Hame WDffzet YSize ROffset RSize | Flags

et 0 00000400 1] =0 0
0000040

00003000 00007Co0 00000200
TSIC 000oB000 0o00a3ss 0oa0gao0 00003400 40000040

Image 1.39 - Sections Table in LordPE

19 LordPE: http://mitglied.lycos.de/yoda2k/LordPE/info.htm

http://mitglied.lycos.de/yoda2k/LordPE/info.htm

PAGE 22 V. ARTEAM EZINE
£ A8

Right-Click on the .text row, and choose Edit Section Header from the Right-Click menu. This will open up
a new window showing just the information for the .text section. We need to modify the flags for this
section. Choose the ... button located next to the Flags textbox:

[Edit SectionHeader]

— Section Header

I —r Ok,
Mame: et |—I
Vitualdddress: | 00001000

WirtualSize: Q0007748

RawDffzet: I 00aao40a
B awsize: I Q0007200 Maodi fy

Flags: Ennnnnz — Flags

Image 1.40 - Modify Flags in LordPE

A new window will open where we can set individual flags for this section. Set the Writeable flag by
checking the box next to its name.

Setflags———— When you have set the flag press OK unfil you refurn fo the

[] Shareabls in mermany Section Table. Close the table, and you will be find yourself

E’iﬁgﬂe &s cods back at the PE Editor. Press SAVE fo save the modified flag to

\Wiriteabla our executable. You can now close LordPE and fest out

: : Notepad. It runs perfectly now! We can move onto the final

Image 41 - Setting a Flag in LordPE step; modifying the Menu ID number comparison.

The last thing we need to do is fo add a CALL to QuickPaste in

the Menu ID comparison routfine. We already have all the

information we need to accomplish this. We know where the routine is, we are finding the location of

QuickPaste and storing it in 1008798. All we need to do now is find a suitable location to place our CALL.

Begin by opening your modified Notepad in Ollydbg. Go to the beginning of our Menu ID comparison
located at 1002887

aieazeay | rs SBFF MOL EDI, EDI

aiogzpa9)) . 55 FUSH EEFP

aileazesn|] - BBEC moy EBF, ESP

Gileazeoc|| « S1EC SB@2eb@ SUB ESP, 268

aie@azesz|) . Al B496AEE1 | MO ER:, OWORD FTR OS5: [18836641
@io@azesy|] . SBEE B2 ML ED, DWORD FTR SS: [EEP+2]

Image 1.42 - Beginning of Menu ID Comparison Function.

We are going to look for a suitable location to insert our CALL. We know that the Menu ID is going to be
stored in EDI. So we want to get as close to the location where the Menu ID is moved into the register as
we can. This will cut down on the amount of instructions we may need to emulate, because remember
that if we overwrite anything we need to make sure we emulate it so our program continues to function.
Scroll down in Ollydbg until we get to here:

AlEEZESE|] . E& FUSH ESI
alEEZEsC|| . EF FUSH EDI)) ——r—
aieezEs0|| - 874E FC MOL OWORD PTR S5:CEEF-41. EAX This is where our MENU ID
alaazens|| . 23Fs #OR ESI, ESI / T AT e
aleazenz|| . 23Ca #OR ERX, ERX 18 Written lnto Ll
G1EEZEA4|| . EE:Z9BE F4FDI MOY WORD FTR SS5:[EBF=28C1, 'SI

GlEEZEFE|| « B? S10000G& | MO ECH, £1

aimeezees|| . SDED F&FDFFFI LEA EDI, DWORD' PTR S5: [EEF-28A1

G1EEZEEE|] . F2:RE

EEP STOS DWORD PTR ES: [ECI]

QlEEZEES|) « EE:AE] LED-RTE
HiFEZEEH|] . HEFBEYYD AC &0ULiEs EDI, WORD FTR S5: CEEF+C1 >
B1B82BBE|| . S3FF 48 P 2l Switch [cases 1..3683]

Cl 0T, ==
H1HEZECL|] « 9995 FAFOFFF| MOV DWORD PTR 5S:[EEF-2181, EDX
H1BEZECT || .~ BFSF F986B888l J5 MOTEPAD. 818832C6
A1882EC0|] .~ BF84 DEB&EE8| JE MOTEPAD. 810832RE

Image 1.43 - Menu ID Moved Into EDI

We see above that our Menu ID is being moved into EDI directly above a compare. We do not
necessarily want to overwrite the compare function as it is critical to the switch. This does not give us
much room to work with. We are just going to have to overwrite the command that move the Menu ID
and the command directly above it if we are going to fit our CALL info this code. Select STOS WORD PTR
ES:[EDI] at line 1002BB8 and press SPACE to Assemble the line. We are going to now add our CALL to the
QuickPaste function. The code we are going to enter is: CALL DWORD PTR DS:[1008798]. That code will be
caling the address location stored at 1008798, which is where we stored the QuickPaste function
address. Enter the code above in the Assembly box and assemble the new CALL. Your modified code
will look like this:

ARTEAM EZINE PAGE 23

alaazeral] « 33F6 »OR ESI, ESI

AiEEazerz(|l . 32Ca #0R ERH, ERH

AlaazeR4 || « &6:8985 F4FDOI MO WORD PTR S5: [EEF-28C1, 51
A1EEZEAE|] « B2 S16@86E6E | MOL ECH, 81

HiEazeed||l « S0BD FESFOFFFI LEA EDI, OWORD FTR 55: [EEF-28A1
Hiaazees|l . F3:AB REF STOS OWORD PTE ES:[CEDI]
H1EEZEES FF15 9887E606H) CALL HERR OWORD FTR DS5:[1882733]
H18B2EBE | . S3FF 48 CHP EDOI, 48 Switch (cases 1..3683)
AiEEzeci|] « 8995 FEFDFFF] HOW DWORD PTR S5: [EEP-2181, EDH
HIBEZECY|| .~ AFEF F985E8E J5 MOTEFPAD.H1EESZCE

Alaazecol]| .~ 8F84 DBGSoEEl JE HOTEFPAD.81E8832AE

plopzeos|| o 83FF 15| GHPSEDIMIS | __

Image 1.44 - Modified Menu ID Routine

Now that the modification has been made to the Menu ID comparison function we need to save it fo an
executable. Follow the same steps we took before to copy all our modifications made in Ollydbg to a
new executable. You can name this final executable whatever you desire. | named my modified
Notepad; Notepad.Final.exe. We can now close out OllyDbg. We are finished modifying Notepad, we
added new menus, we modified it so it will load our QuickText dll during initialization, and finally we
added a CALL that will redirect the function that compares the Menu ID to our own QuickPaste function.
With our modified Notepad complete, we only have one more step fo take.

6. QuickText DLL Revisited

We need to make a quick modification fo the QuickText DLL. In Notepad we added the CALL to the
QuickPaste function by overwriting some commands. We need to emulate those same commands
within the QuickPaste function to ensure stability. Open up your QuickText DLL project in RadASM.
Navigate down to the beginning of the QuickPaste function and add the two highlighted lines below:

I-)LLEntry Endp ;*END OF QUICKTEXT ENTRY FUNCTION*
QuickPaste proc ;*QUICKPASTE FUNCTION*
STOS WORD PTR ES:[EDI] ;Emulate replaced Notepad function
MOVZX EDI, WORD PTR SS:[EBP+0Ch] ;Emulate replaced Notepad function
-IF EDI==55
Mov EDI, OFFSET wQuickTextl ;1T Menu ID = 55 MOV offset of first Character

;String into EDI
.ELSEIF EDI1==66

Build the DLL the same way we did before:
1. In RadASM choose Make->Build to compile the DLL
2. Output results will be displayed in a window at the bottom of the program. Your DLL will be
located in the ...RadASM/MASM/Projects/QuickText/ folder

After the new QuickText DLL is built, be sure to copy it into the same folder as our Notepad.Final so it can
be loaded by Notepad. Now that we have emulated the replaced functions we are ready to move
onto the testing of our new Notepad.

7. Results &Final Remarks

We have completed all the work that needed to be done to on our quest to add a new feature o
Notepad. If we applied the steps correctly we will be able to add predefined text by simply choosing an
opfion from our menu. It is finally fime fo test our newly created Notepad functionality.

1. Locate Notepad.Final.exe
2. Verify that QuickText.dll is in the same folder as Notepad.Final.exe
3. Run the program...

ARTEAM EZINE

&

Il
File Edit Format View | QuickText Hel
lquickTexti | QuickText1
QuickText2

SUCCESS!

=

14 7
Image 1.45 - Modified Notepad Running

The project was completed successfully, but that is not the end of the journey. You have the option to
build on this information by adding new menu items and changing the features they provide, creatfing a
custom program all on your own through editing more resources and menu's, or maybe enhancing the
portability by making the dll read from a file; allowing others to change the defined text. It is true that this
topic has been covered many times. Hopefully the application of new tools and a different approach
made the paper feel new and useful. | tried my best to put a lot of new information and strong
explanation into this paper.

2. Patching by using resource, tThunderPwr of ARTeam

1. Introduction

The aim of this paper is to show another way of patching one application and keep it registered by using
the information gathered from application resource.

Target used for this essay was DLL to Lib, a nice application useful for converting a DLL library into a static
library.

Target Name: DLL fo LIB v1.42

Target URL: hitp://www.binary-soft.com/dll2lib/dlI2lib.ntm

Since this isn't a full cracking futorial I'll not cover the unpacking stage, I've done it manually in a very
simple way (AsProtect 1.2 / 1.2c-> Alexey Solodovnikov). Take care by using Stripper v2.07f your PC may
reboot, as a hint reach OEP and use ImportREC, show invalid and use Trace 1, now you've only one
unresolved API, keep it by using the Disassemble/HexView function and is easy to show that is was the
GetProcAddress API.

2. Resource searching

Start ResHacker and perform a text search for the string “Unregistered Version” with ResHacker:

E4 Resource Hacker - C:\Programmi\DLL2LibADIZLib.exe
File Edit BUEEN Action Help

#-(Avl Expand Tree
+-[] Cu Collapse Tree

4 [Biti
: Dlwm

.07 5t Editor Font ...

+-[Z1 Cursor Group
+-[] leon Group
+-[1 Wersion Info

+-[] Diz Trgva: |unregistered version

[Maiuzcoledminuscale

Trova successivo
Annulla

Image 2.1 — ResHacker

http://www.binary-soft.com/dll2lib/dll2lib.htm

ARTEAM EZINE PAGE 25

Hide Dialog

15z DIALOG O, 0O, 396, 239

STYLE DS MODALFREAME | W3 FPOPUP | W3 _CAPTION | W3 SVYSHMENU

CAPTION "Aghout™

LANGUAGE LANG ENGLISH, SUBLANG ENGLISH U3

FONT &, "M3 Sanhs Serif”

{
CONTROL 130, -1, STATIC, 35 _ICON | WS_CHILD | W3 _WISIBLE, 25, 31,
COMNTROL "Copyright(C) 2001-2003 by Binary Soft Ine."™, -1, STATIC,
COMTROL "Support:", -1, STATIC, 35 LEFT | W3 _CHILD | WS VISIBLE |
COMNTROL "supportBbinary-soft.com™, 1010, 3TALTIC, 53 _LEFT | W3_CH!I
COMTROL 153, 1072, 3TATIC, 33 BITMAP | WS_CHILD | W3_WISIELE, 97,
CONTROL 171, 1073, JTATIC, 335 _BITMAP | WS_CHILD | W3_VISIELE, 107
CONTROL "Registered to:", -1, BUTTOM, BS_GROUPBOX | W3 _CHILD | W
CONTROL "ifa=ts kN ed Ve r",:1063é STATIC, 55_LEFT | W3_CHILD
CONTROL "Howepage:", -1, 3TATIC, 33_LEFT | WS_CHILD | W3 VISIELE
CONTROL "http://www.binary-soft.com™, 1011, STATIC, 35 _LEFT | W3

i

Image 2.2 - Resource inspection with ResHacker

Image 2.2 shows that the needed resource ID is equal to 1063 in decimal, 0x427 hexadecimal.
Load the target in OllyDbg and perform a search for all constants equal to 0x427.

e — E—— - S
eyl I e,
aadzae13|| . &R FF g Backup 4
GG429E1E|| « B8 G24F4EEE Foeo v
aodzoE2E|| . 68 CoFadZen i o SE handler installation
60423625 || . EdrAl GRBEBEEE 0 Binar "
ap4zopzE|| o e F ¥
aa425E2C| |« 6418925 PRABERERE i
ooazoess|| L BsEC B2 § Assemble Space
el o] Lok |
ap4zoEan|| . E7 F o Comment :
aadz2o633|| . 8955 Es i _
EE429E2C| |« FF1S BSF34488 0 Breakpoint k l.GetUersion kerne |32, GetUersion
ga429e42|| . 2302 i)
aa4z23644(| « GA04 r Hit trace 3
Ga423E46|| . 8915 DCIddEER i
BA429E4C|] . SBCE b Run trace »
oa429E4E|| . B1E1 FFR@GEaE i
Ga420E54|| . 99ED D2944E68 N ocan 5
| e i,
an42oesF| | - 9980 Davsscoa f Follawin Dump B
aadzo865|| . ClES 1@ g
ap4z2ecc|| - A3 DBY4scEm [iew call tree Crl+
Ba423E60(| . A Bl i
a0429E6F || . ES DB420888 i i
abea| (= [g 3 Mame {label) in current madule Crrl+HM
SS:S%E;; . gECSS 1 4 Mame in all modules

~ J
sa4zoe73|| . &R IC B Wiew 4
Ga425E7E|| « ES Coonoenn [Cormmard Chr+F
aa423e2a| | . F Copy ko executable]
Ga425E21 || > ES 363E86G6 0) Sequence of commands Chrl+5
aadzoEss|| . 85ce 1 Analysis 3
gadzoesA|| . eA 1@ i " "
aadzeeac | L EE ERonoeon 1 Detach Process Binary string Chri+E
ga423e91|| . B9 i
§§§§§§§§ > gg;gEEgBBBB E Process Patcher All intermodular calls
33353335 ' EE‘SSSEEéSSBB F Baakmark. 3 All commands
SS:S%EEE : ES 83833233 F Fun Script ¥ Al sequences
oo [SkeetH I Dump debugged process All constants
oa425e65|| « ES B4ssoE0E i All switches
G6429EEE|| . ES_S1ABAGGE 1 Appearance
ggj%gggg . ggzg Es [E All referenced text strings
Ba423eCE|| . 56 PUSH ERX
aa4226C7 ||« FF1S 44F 14408 CALL MEAR OWORD PTR DS:[<&kernelf User-defined label

. LD. .
| o oM BB | L comm
AR422605|| - Fe45 DA Bt TEST BYTE PTR $5:[EEP-381,1
EEREEE]l | ov g BR s ST (LI Rl |

Image 2.3 - search the resource int(; OllyDbg

PAGE 26

Press Ok:

|

ARTEAM EZINE

Enter constant to searc... gl

Hexadecimal |427
Signed 1083
Unsigned 1063

Ok | Cancel |

Image 2.4 - OllyDbg constant search form

- [References in DI2Lib: to constant 427]

File W%iew Debug Plugins Options Window Help

EBlx] w0 s ¥ =
Address |Disassembly | Comment

BE4E1 262 | PUSH 427 Resource Unregistered

BE429B16| FUSH EBP (Initial CPU selection)

Image 2.5 - search result

Press Ctrl+G and write 0x00401302, we're into this code:

dadE] 262
BE4E1267
Ba4E1250
EE4E12EE
BadE1Z65
BE4A1 268
gadE1ze3
BE4E1 266
EE4E127E
Ba4E1271
BE4E1272
Qa4E1277
BE4E1270
gadE1z221
BE4E1237
BadE1z230
BE4A1292
BadE1 294
BE4E1296
BE4E1290
BE4E129F
BE4612A4
Ba4E12HA
BE4612B6
ga4E1 2B
HE4E 1 2EE
Ba4E1Z2ED
BE4E12BF
Bad4E1zC]1
Ba4E1203
BE4E1205
BE4E1205
GHE4E1 200

BE4E1 205
gadE1207
BE4A1209
Ba4E120E
BE4EA1ZER
BadE1ZES
BE4E12E4
EE4E12EL
BE4E12ED
BE4612ER
Ba4E12ED
BE4E12F1
gadE1zF2
BE4A12FS
Ba4E12F0
BE4E12FF
BEdE1 261

dadE]zE7
EE4E138F
BE4E1214
BE4E1313
BE4E1226
Qa4E12325
BE4E]1329
Ba4E132E
BE4E]1 235
BadE] 338
BE4E1339
HE4E122A

<

] PRI
< <

<

-

B nEE Eonem R oE R R R oEoE o oE o omonensEowow o

&R FF
&2 12Al4400

£4: Al DEOEGEE

8

&41 8925 AREE
S3EC B2

=13

SEF1
E3 RABESE30E

SBCC

296424 BC

&2 CIaneang
E2 ERECEZ2EE
SBoc C4B1a88
202E C4E1RE6

EF?B EzE0a80

SB9E A4E]aE6
202E a4a81a6a

FF92 BoEOREE

ES 48F 183208
2ECA

33ca
2022 F4EFaEa
E2 4BS18188
2ECA

74 4C
E2 1DF1@30@
sEca

2aca

E?4C24 B4
2022 F4BFaEa
E2 43518106
cBeg

2BCE

8

&3 27A48800
Cradzq 1C B8
E3 RAGERE3EE
204024 B4
Cr4424 14 FF
E2 42EBRE2AE
SB4Cz24 BC

B2 B1AGEAHGE
415980 AaEa
EE

23C4 14

c3

)

FUSH -1
FUSH DLIZLib. BE44A112
MOL ER, OWORD PTR FS: [E@]

PUSH EHX

MOL DWORD PTR FS5:C@1,ESP
SUE ESF,.2

PUSH ESI

MOL EST,ECH

CALL DL12L ib.@@43C61E

LIZH

MOL EC:H, ESI

ML DWORD PTR S2: [ESP+CI, ESP
PUSH BC2

CALL DLIZLib. &E42FEDE

MOL ER:, DWORD PTR DS: [ESI+1C4]
LEA ECX,OWORD PTR DOS:[ESI+1C4]
CALL HEAR DWORD FPTR DS: [EAR+ES]
PUSH ECH

MOL ECK, ESP

ML OWORD PTR 55: [ESP+C1,ESP

P

CALL DLI2L ib.@@4SFECE

MOL ED, OWORD PTR DS: [ESI+1G4]
LER ECx,DWORD PTR _DS:[ESI+184]
CALL MEAR DWORD PTR DS: CEDK+ES]
CALL DLIZL ib.0@4483FE

TEST ERX,EAX

JE SHORT DlLlZ2L ib.Bad4812C2

MOL ED:<, DWORD PTR DS: [EAX]

MO ECX ERX

CALL MEAR OWORD PTR OS: [EDX+741
JMP SHDRTHDLIELLb Bad4a12cA

LEH ECH, DWORD FTR DS [ERx+FF41
CALL OL12L k. o4164

TEST ERH,EAX

JE SHORT D12l ib. Ba4E1325
CALL DLI2L ib.@@4483FE

TEST EHX,EHA

JE SHORT D112l ib. BA4E12ER

HDU EDX DMDRD PTR DS: [ERX]

CHLL HEHR DUDRD PTR_DS: EEDX+?4]
SHORT DllZLib. Aa4alzE

HDR ER . EHH

LER ECX.DMDRD PTR S5: [ESP+4]

FUSH ECK

LER ECx,DWORD PTR DS: [ERX+FF41]

CALL DLI2L ib. @34 16446

MOL ER, DWORD PTR DS: [EAX]

ML ECH,EST

PUSH ERHX

FPUSH 427

MOU DWORD PTR_SS5: LESF+1C]T, @

CALL DLI2L ib.@@43F3ER

LEA ECx,OWORD PTR 25: [ESP+4]

MOL OWORD PTR_S5: LESP+141,-1

CALL DLIZLib. GE42FESD

MOL EC:, DWORD PTR S5: [ESP+CI

MOL ER, 1

MOL DWORD PTR FS:[@1,ECA
FOF ESI

AOD ESF, 14

RETH

HOF

SE handler installation

Check registration string

Resource Unregistered

Now place the software breakpoints (F2) showed above and restart the target by using Ctrl+F2 then
press Shift+F?, reach the address 0x004012D0 and enter into the call code (F7):

ARTEAM EZINE

e MO
) HOF
¥ Al eCy34e08 MOU ERX, DWORD PTR DS:[4672eC]
. BECB TEST EHX ERX
Y Eg 11 SESSHDRT OlLl2Lib.2841643R
. FF15 48F244@) CALL HEAR _DWORD PTR DS: [<&kernel32. lstr
SECE TEST _ERX, EAX
.~ vE B& JLE SHORT O112L ib. BE416450
B2 9loBaaos | HMOU EAE, L
. L= RETH
» 2308 HOR ERE, EAE
. LC= RETH
L] MOF

PAGE 27

[

Strlng -> BAREZ48S 77T
letielenA

Target was search for the registration name, if no valid one will be found the function return with EAX=0
and then the PUSH 427 will be executed then our registration name will be Unregistered Version, ok now
we've got the ftrick. To defeat the protection system and keep the target registered simply put in
[46736C] a pointer to a valid string.

3. Patching

Restart the target and put a memory breakpoint on access on 0x0046736C, this is to make sure if the
same code will be called during startup to check if the target was registered or not, press Shift+F9.

OllyDbg on start and before show the main window will break into the same routine, now scroll down fo
the end of the file to look for some free space and write the patch below:

AE44E07F
aa44E0En
aa44ERSS
Aa44E0SE
aa44EQSE
aa44ERZE
AE44E0SE
aa44E05A
aa44ERRE
AE44E0RE
aa44ECER
aa44ERES
OEIERER

TR RTRT S

K

040 F@
EZ ES13FFFF
2040 @4
ES DD12FFFF
ES THES4508

E9 2297FOFF
4 £2 FE EE
53]

E3 EE7P3FCFF
e

#CYEE SCVPI45E0 JAER44E0
Al ECY24e0E

THTZ

LEA ECH,DWORD FTR SS: [EEF-161
JHP DL LZL ik, BB43FEED
ECH,DWORD PTR SS2: [EEP+4]
JHP DILAL ib, AB43FEED

HOW ERA,DLL2Lib. BB45E5?B
JHE_OLLEL ik AB42D

&4 EE F2 @ 77 VP2 OB |ASCII "ThundePPur”.B
DE &g

HOW ERX, OWORD FTR DS: 0
dNP DllEle BEd16425

MO DWORD PTR OS: [46?36C] Dll2L|b BE44EATA
67

Structured exception handler

ASCII "ThunderPwc" i

Address

Hew dump

ASCII

[EEEETED
BE44ERAF]
BE44EAER

E4 62 VPE EE &4 EE 72 BB 77 v2 BE| 08 C7 85 &C 72
46 HE FH EA 44 ©@ Al &C/ 73 46 B E2 &B 79 FC FF
B0 0@ B0 80 88 B8 PE B0 0O B8 B8 B8 B8 OG0 OB 89

Also apply the redirection to our cave:

HE41641E
a4 141k
B4 16426
a4 16425
HEd 16427
a4 16429
HE4 16420
a4 16428
A4 16432
a4 16434
A4 16439
a4 16430
A4 16430

BE4 16430

26 MHOP

28 - HOE 1
$~-E9 21268308 || JMP DL 2L ib. BE44ERARE |
| B5C| TTEST ERRVEAX -
el 7411 JE SHORT Ol IZL ib.BE41643A

g FUSH EA
FELE 4EF 246
550 TEST EAH, EAX

| TE B& JLE SHORT DLLZLib.BE41643A
. | B2 Blo@apaa | Moy EF, 1
.- | C2 RETH
* | 23Ce AOR. ERH, EAX
- | C2 RETH
28 HOF

Now run the target and look at the window caption:

CALL MEAR DWORD FTR DS:[{&kernelS2. lstrlenk]

ThunderPur. . &%=
F.i0D. i lsF.dky®

Redirect ion

String
l=trlenf

[

ARTEAM EZINE

““4DLL to Lib v1.42

Corwert]Advanced Conversion Qpliuns] |mport Librany R eference Information Qenaralur] Spmbol Eindel] About]

1~ Dynarnic Link Library Parameters: - 7 Static Library Parameters:
The DLL File to be Converted: Output Static Librany File:
I™ Support COM-based DLLs Link Options: -defaultiib: LIBC -defaultib:0L
e P bglesiopthe Bl ’ i~ Remove Useless Sections -
Add W idata ¥ .edata V¥ idata
Remove W rsrc v reloc
Bea || ¥ Check COMDAT Symbol in Import L

Carwersion Process Log:

Load Project

Save Log Copy Log Find in Log J Save Project

i) <

Help

Also look intfo the About menu:

“UADLL to Lib v1.42

Convert] Advanced Conversion Options] Import Library Reference Information Generator | Symbol Finder

DLLto LIB

Version 142

Copyright(C] 2001-2003 by Binary Soft Inc.

Homepage: http: v, binary-soft. com

Support: supportiEibinary-saft com

i~ Regiztered to:

ThunderPwr

Ok but this isn't working, if you try to convert a dll target will crash, reason is about the reusing of this
code for another task: we need to patch all the code from the original call.
To do it apply this patch instead the previous one:

HE44EHZH] o« 54 &8 ¥5 6E (ASCII "ThundecPwr™, 8

BE44EARS [a]5] OB B&8

BE44EARS| . CPBE &C7346@ MOY DWORD PTR DS:[46736C1,01 L2ZL ib. B844ERSA ASCII "ThunderPwe
EEd4ERER| . AL ACY3468@ | MOU ERX,OWORD PTR DS:[46736C1

HBE44EABS| . 85CE TEST ERX,ERX

HE44EREY| .~ 74 11 JE SHORT DL L2l ib. @844EACAH

HE44ERES| . 5B PUSH ERX String = BAAE3485 TP
HE44EAEA| o FFLE 48F244@ CALL HEAR DWORD PTR DS:l<&kernsl32. lstrlenz]|klstrlenA

BE44EACA] . S5CA TEST ERX,ERX

HE44EACE| .~ FPE @& JLE SHORT Dll2Lib.@&44EACA

HE44EACY | . BS @laed@es | MoU ERX, 1

BE44EACY] . C3 RETH

HE44EACH| > 33CA HOR ERX,EAR

BE44EHCC) o C3 RETH

pa4dEnco| © ga DE 2

Above code is the original one but this fime | have forced the registration string.
Now change also the redirection from the registration checking from 0x004012D0 then:

ARTEAM EZINE

PAGE 29

AA4E12C3 . FF52 74 CHAHLL MERE DWORD FTE DS: [EDX+74]
@a4E1zCe| .~ EB B2 JMP SHORT DL l2Lib.8@4812CA
aad4a1zcel > 33CA #0R ERX,ERX

EEdE1ZCH| 2082 F4eF@@@ LEA ECK,DWORD FTR DOS: CERX+FF41]
BE481 208 EE DID0FE488 |CALL DL L2l ib.8844ERARS

BE4E1 205 . TEST ERX,EHRA

aa481z207v w 7 4C JE SHORT DLLl2Lib,.Ba4a1325
aa481z209 EZ 10F1@3@@a |CALL DL lZ2Lib.084483FE
aa48120E| . &5CAE TEST ER=,.ER=

HAA4E1ZEA| .~ 74 B9 JE SHORT DLLZL ib.BA4A1ZER
HE4812EZ2| . ESBla MO ED., DWORD PTR DS: CEAX]
aa4812E4| . SBCS ML ECX.EHX

Ba4812ES4(. FF52 74 CALL HEAR OWORD PTE OS5:[ED-+741]
AE4R1ZES| .~ EB B2 JHMP SHORT DL LZ2Lib.@@4E812ED
HAA4RA1ZER| > 33CA HOR ERX, ERX

@a4a1zeED| » S04C24 84 LEA ECx,DWORD FTR S5:[ESP+41]
aa481zF1| . 51 FUSH EEX

EEdEizFz| . 2082 F4eF@@@ LEA ECK,DWORD PTR DS: CERX+FF41]
BE4812F5 ES 435181868 |CALL DL l2Lib.B8416440
HA4E1ZF0) . SBEA MO ERX, DWMORD PTR DS: CERX]
aa4812FF| . 8BCE Haw ECH,ESI

aadaizall o 58 FUSH ERX

@EdEizaz| . &8 ZYadEEEa | PUSH 427

EAA4E1ZE7 | . CY4424 10 @A MOV OWORD PTR S5: [ESP+1C1,. @
EE4E1ZEF | . ES AGEBE3EE | CALL DLLZLib.BAB43F3EBA
@aadaizi4| . s04C24 84 LEA EC¥,DWORD PTR S5:[ESP+41]
@adEizial o CY4424 14 FFIMOU DWORD FTR S5: [ESP+141,-1
EEd4E1E2E| . ES 48EBE3EE | CALL DLL2ZLib.AR43FESD
HAA4E1Z25) » BB4C24 B MO ECH,DWORD PTR SS:[CESP+C]
EE4E1z29) . BE AlEBEEEE | MOV ERR, 1

EE4E122El o &d4iE980 @@aa@ Mo DMDRD FTR FE:[B@1,ECH
aa481235(. SE FOF ESI

BE4E1 336 83C4 14 ADD ESF, 14

AA4R1 339 C3 RETH

pedpi3za| ~ 98 HaF

and also restore the original code:

EE41E41F a6 HOF

B8416428 r5 Al 607346008 | MOY ERX, DWORD PTR DS: [46736C]
BE41e4251) . SECA TEST ERX,ERX

Ba416427) . 74 11 JE SHORT DIlZLib. 6684146430
BE41e4291) . 58 PLEH ERX

EE41c42A|) . FFLE 4@Fz244@0 CALL HEAR DWORD PTR DS: [{&kernel22.
gE41c4z8|) . SSCA TEST _ERH,ERX

Ba41e422|] .~ FE B8 JLE SHORT DI LZL 06, BR41643A
BE416434 . BE B1AEERGE | MOU EAX, 1

BE41e423)) . C3 RETH

EE841542A|1 > 33CE WOR ERX,ERX

ga41e42C) k. C3 RETH

BE41e420 L] MHOF

Redirection to our recoded routine

Resource Unregistered

String =» BEAEZ4EE Y7
l=trlenA

This patch forces the About box and the target to be registered but we have also to patch the original
call for the caption window then simply put a breakpoint on 0x00416420 and run the target when
OllyDbg break simply reach the RETN instruction and press F8 to go info the caller code.

Now apply the patch below:

EE4ETAREE| . E@ PUSH ERX LPaam

HE4EFHES| . 6H B@ PUSH @ wParam =

HE4EYEES| . 65 SOBE0AEE | PUSH S8 Message = NH_SETICDN
geqeracnl . 51 PUSH ECx hlind

EE4E7EcEl . FFOY CALL MERR EDI SendMessa3=A
CEqE7EcE| . S02E F40FEREI LER ECH, DWORD PTR DOS: [ESI+FF41]

. E3 BSF38@8A |CALL DLl2L ib.Aa416420
ER4E7ACE| . B5CH TEST _ERX, ERX

HE4E7As0| .~ 75 31 JNZ SHORT O L2Lib. Ba4a7ERE
EE4E7EEF| . 68 DIEEGAEE | PUSH B0O2

dEqEyvE 4| . 804024 18 LER ECH,DWORD PTR S55:; [ESP+12]
BE4ETATS EZ_SESEG3E@ |CHLL DLlELLb . BE4SFEOE

called on start and also used in conversion stage

our routine is called on start and also info the converting process then we can’t simply paftch the
redirection to our cave because for other task it crash the target, to solve in a simple way the trouble we
can patch the call to another cave, execute the patched code and then patch the original redirection
to go into the old call, let me explain better, first patch the call with a redirection to our new cave:

EEdEFEsZ] . BB4E 1C MO ECH,0OWORD PTR DS:[ESI+1C]

BE4A7ASESl . 5@ FUSH ERX

FE4EFEES| o GH BA FUSH &

HE4AFEES | . 68 SEEEREEE | PUSH S8

HE487EE00 . E1 FUSH ECH

HE487A5E| . FFO7 CHALL HERR EOI

HE4E7ECH| . 808E F4@FEEEI LEA ECH,OWORD PTR D5: CESI+FF41
EZ &27FAE4E@ |CALL DL LZLib.B844EACD

EE4AFAGE|] . B5CH TEST ERX,ERX

BE4A7AE0l .~ F5 31 JHE SHORT DI LZL ib. @848 7ERE

FRdAVARF | . A8 DIBRBABEA | PUSH 803

Eadnva 4 . S04C24 18 LEA ECX,0WNORD PTR 55:[ESFP+121

EadEvEFE| . ES SESE@ZE@ |CALL DLIZLib.@843FEDE

EE4AFEFD] . SEEE MO ERX, OWORD PTR DS: LCEAX]

ggpdgrgcE| 1 8BCE MU ECH ESI

then write into the cave the following code:

LParamn

wFParan =

Message = wH_SETICDH
hind

SendMessageA

Redirection to cave #2

Ba44ERH
BE44EARS
Ba44ERRG
BE44EAEBR
EE844EAES
EE44EAET
BE44EQED
EE844EAEA
BE44EACEH
BE44EACE
BE44EACY
BE44EACS
BE44EACH
BE44EACT
BE44EACD
EBE44EACE
BE44EADEA
BE44EADR
BE844EADE
Ba44EADC
Ba44EADD
Ba44ERDE

S5Ca R, ERR
oo 7411 JE SHORT DllZLib.o@44EACA
FUSH ERX String =» BEAEZ4EE 797

.~ ¥E BE JLE SHORT DL LZLib. @844ERCA

ARTEAM EZINE

54 &8 V5 6E (ASCII "ThunderPwe'™, 8
Ba DB B@

CPEs eCy34em MO DWORD PTR DS:C46726C], 00120 0B.¢ RSCII "ThunderPuwc'

Al eCv24ed@d | MOU ERX, OWORD FPTR DOS:[4672EC]
TEST ERR

1]
FFLE 4@F244@ CALL HEAR DWORD PTR DS:[<{&kernel22,LlstrlenA
2ECE TEST _ERX, EAX

B2 810688068 | MOU EAX, 1
] RETH

22Ca HOR EAK, EAX

=] RETH

22Ca BOR EAK, EAX Cave #2

46 IMC EAX

EEBE EEFE4EE EE¥HDNDRD FTR DS:[4B87B8E], BF2ZEEES Festore the original code
ag CE @

[sl5] DB Ba

ag CE @

a8 DB Ba

In this way the first fime we keep on execution with the patched code and for all the remainder time is
executed the original code, more simple but effectivel

DLL to Lib v1.42

Symbol Finder | Registration | About
Convert | Advanced Conversion Options | Impart Library Reference Infarmation Generatar
— Dpnamic Link Library P. 1 — Static Library P. h

n The DLL File to be Converted: s Output Static Libray File:
C:ATemphPelip.dl _J l':"- TempiPelib.lib

|||
B

~ Conversion Process Log:

Start conversion. -~
Freparing for the conversion... =
Conwert DLL file into object files...

“w'amning 10: Cannot find corresponding export symbol for BoundimpotDirectoryaddB oundlmg
‘warning 10: Cannat find corresponding expart symbal for BoundlmpontDirectary_addForwards
‘warning 10: Cannat find correspanding expart sumbal for BoundimpartDirectary_caleMumberC
“warning 10: Cannot find corresponding expart symbol for BoundlmpaontDirectory_clear in the in s
£ | 3

Fird ir Log |

Well now we can said all done!

4. Final Remarks

This paper shown how to use resources to bypass protections, also | pointed some details about code

patching.

INE PAGE 31

C

3. Patching Event Driven Nags, shub-Nigurrath of ARTeam

1. Abstract

This is a little tutorial about a method, well known indeed, of patching event driven nags.

The target is Back2Life for TC where TC stands for Total Commander. This version of Back2Life is a file
system plugin for TC that unerases files found on the hard disks and drives generally, more or less like the
full program Back?2Life, sfill of the same company.

Target Name: B2L4TC 2.33
URL: http://www.grandutils.com/Back2Life4TC/

An event driven nag is a dialog not creafted with a simple MessageBox, but a complex dialog with its
own message pump and different events, handling the nag itself. Example of these nags are nags with a
running fimeout inside, or animated nags, or just nags that are meant to be a litfle more difficult to be
removed. The fact is that message pumps are on the one hand very simple to program and on the other
hand, not so simple to follow and are always a tedious task.. Most of the fimes moreover, like this one, the
messages also initializes parts of the programs checked later as an anti-tampering countermeasure.

2. Analyzing the target

The protection is quite simple as the author states, just to discourage illegal use of the program: a nag
with a countdown counter of 15 seconds after which a "Recover" button is activated. The program, a dll
renamed with extension .wix as requested by TC, is packed with UPX and has no CRC checks that can
complicate things. It is programmed in Delphi

There is one specific issue anyway; the dialog initializes different program variables and internal function
pointers into different places. Its creation involves several variables and function pointers required to
correctly run the application after the nag has been shown. Just skipping the nag won't make the
program running. It's a clever nag..

Further analyzing the nag code we can see that the 14 seconds countdown is done sefting 14 times a
1000 msec (1 sec) timer with a call to SefTimer.

Starting from the most distant point, open a resource editor and see which the resource responsible of
the nag is. You will easily recognize that it is the SCREENDLG dialog, which contains the text and a
hidden field which will contain the countdown message of the trial.

| About B

To the Honest User:

it This screen is the OMLY limitation of BackzLife for TC.
SAVE Please use it to test and to recover as many files as
THE you need, But if it helped you to save important data,
LOST... please honestly consider reqgistering.

This software only costs $15 - excellent price for FAT
and NTFS recavery!

Registration will remaove this screen too,

[Reqgister J Recover

Image 3.1 SCREENDLG resource

As | already said, just skipping the nag like anyone might have thought won't work: the program in this
case has three different behaviors, depending where you skipped the dialog:

http://www.grandutils.com/Back2Life4TC/

m

ARTEAM EZINE

1. Wont' recover the deleted files

2. Recovers the deleted files but doesn't place into the recovered file any data (the file will be
"empty").

3. Hangs because there are some function pointers not correctly initialized.

Definitely a cleaver dialog!

3. Approach and analysis

| thought of a different approach: rather than going into the program digging where it fixes all the
required function callbacks and variables | will force it to work exactly as it works when you wait the
fimeout and press "Proceed" button; | am going to automate the dialog. The approach is general
enough to be applied to any other dialog you want to "automate" and allows you to not loose your time
searching where the program fill the check variables.

As | said the SCREENDLG is the resource involved with this dialog. Disassembling with the help of IDA the
plug-in allows us to export from IDA the .MAP file and import it into OllyDbg, so as the Delphi specific
things will be clear even from OllyDlbg2°.

The dialog is used here:

O1EAFTEO(l . &8 EOF7&A0L |PUSH <BackZLif.aScreendlg= ArgZ = 01EAFT7ED ASCITI "SCREENDLG"
£4 01 DUSH 1 Argl = 00000001
SB1E 40276B0IMOV EDX, DWORD PTR DE: [1EBE740] BackZLif. 016B32A24
2B1E MOV EDX, DWOED PTR DE: [EDX] TOTALCHMD . O0EOEA4D
2BECD MOw ECH,EEP
2BCE MOW EAM, EST

EZ 528060000 |CALL +BackiLif.sub 41FE30> sub_41FE20

L0 PUSH EAX lParam = <BackZLif.ad

€2 ECFDEAN]l |PUSH «BackELif.sub_41FDEC= DlgProc = <BackZLif.Gub_41FDECH

£l PUSH ECK hivmer = 00170564 ('Tot= smwshder' ,clas
8B45 OC MOV EAX, [ARG.Z] “BackZLif.aScreendlg>

L0 PUSH ELX pTenplate = "SCREENDLG"

34 PUSH EDX hInszt = 01630000

EZ DIS1FEFF |CALL +“BackZLif.DialogBoxParamis DialogBoxParamd

Where, clearly, a call to DialogBoxParamA is the call that creates the dialogbox. The important thing is
then, not to skip this call, but to follow where the messages sent to the dialogbox, are handled.

First of all place a Breakpoint to the call of DialogBoxParamA and you will immediately see (to see it you
must know how to use the plugin inside TC, and debug the whole TC with OllyDbg) that the DigProc
passed is Back2Lif.sub_41FD5C.

The DIgProc is the following one:

20 | did this to allow reading more efficiently Delphi code into OllyDbg, as explained into several tutorials
of ours

ARTEAM EZINE

018AFDEC
018AFDED
018AFDEF
018AFDED
0leAFDEL
016AFDEE
016AFDES
016AFDES
018AFDES
018AFDEE
016AFDEE
018AFD70
018AFD73
018AFD7E
018AFD7S
018AFD7A
018AFDTF
018AFDE1
016AFDEZ
016AFDE4
018AFDEE
016AFDES
018AFDES
01eAFDSE
018AFD20
016AFDSE
016AFDIE
018AFDSE
018AFDSD
018AFDAD
018AFDAL
016AFDA4
018AFDAL

016AFDAG
018AFDAT
016AFDAS
016AFDAL
018AFDAC
016AFDED
01&ALFDEZ
015AFDE4
018AFDES
015AFDEE
018AFDEF
018AFDC4
018AFDCE
018AFDCS
018AFDCA
018AFDCF
018AFDDO
018AFDDE
018AFDDE
015AFDDE
018AFDDE
018AFDDF
018AFDEZ
018AFDEZ
016AFDE4
016AFDES
016AFDES
016AFDES
016AFDEL
018AFDEC
016AFDEE
016AFDF3
016AFDFE
016AFDFS
016AFDFA
016AFDFE
018AFEQOD
016AFEOS
016AFEQS
016AFEQOE
016AFEQOD
016AFEQOF
016AFE1l
015AFEl4
016AFELS
016AFE1S
016AFE1S
016AFELA
016AFE1E
016AFELC
016AFELE
016AFEZ0
016AFEZ3
016AFEZE
016AFEZ7T
016AFEZS
016AFEZS
016AFEZA
016AFEZE

E3
EE
3]
13
Eg

00010000
45

3]
TA
oo

EGGZFEFF
70
E0Z48E01

1153FEFF

SEDS
SE45 14

FF10
807E 08 00

T4

71

SEC3

E3
3]
13
E3
EE

E3ZDFEFF
E0Z48E01

TEE3FEFF
ED

SE45 14

L0
3]
13
E3

E0Z48E01

E7&3FEFF

SE45 14
8370 04
8B5S 14

8B5S 10

E3

445ZFEFF
E0Z48E01

L1GZFEFF

SEDS
S5DE

T4

1z

SE45 14

8E45 10

8345 FC
8E45 FC

{4

1000

PAGE 33

PUSH EEP
MOV EEP, EST

PUSH ECX

PUSH EEX

PUSH ESI

PUSH EDI

MoV EDI,[[ARGE]

MOT ESI,[[ARG.1]

HOR EAX, EAX

MoV [[LOCALI1], EaX

MOV EAX, EDI

SUE E&X,Z

JE SHORT <BackZLif.loc_d41FD30>
SUE EAX,0E

JE SHORT <BackZLif.loc_d41FDE6>
SUB E&X, 100

JE SHORT <BackZLif.loc_41FDCE>
DEC EAX

JE SHORT <BackZLif.loc_d41FDEC>
JHP SHORT <EackzLif_loc_41FE0O>
PUSH O

PUSH ESI

CALL <BackzLif.EndDialog>

JMP SHORT <EackzLif.loc 41FEQ0>
PUSH BackZLif. 01l6BZ4E0

PUSH EST

CALL <EackzLif.GetPropks

MOV EEX, EAX

MOV EAX, [[ARG. 4]

PUSH EAX

MOV EAX, [[ARG. 3]

PUSH EAX

PUSH EDI

DUSH EST

DUSH EEX

MOV EAX, DWORDL PTE DES: [EEX]
CALL DWORD PTR DS: [EAX]

CHMPF BYTE PTE DE: [EBX+E2] .0

JE SHORT <BackZLif.loc 41FEZ3=
MOV ELX, EBX

CALL <BackZLif.sub_40ZE0C=
DUSH BackZLif.016BZ4E0D

DUSH EST

CALL <“BackZLif.PemowvePropl=
JHP SHORT <BackZLif.loc 41FEZ3=
MOV EAX, [ARG.4]

DUSH EiX

DUSH BackZLif.016BZ4E0D

DUSH EST

CALL <BackZLif.SetPropls=

MOV EAX, [ARG.4]

MOV DWORD PTE DE: [EAX+4] , ESI
N0V EDX, [ARG. 4]

DUSH EDX

MOV EDX, [ARG. 3]

DUSH EDX

DUSH EDI

DUSH EST

DUSH EiX

MOV EAX, DWORD PTE DS: [EAX]
CALL DWORD PTR DS: [EAX]

JHP SHORT <BackZLif.loc 41FEZ3=

PUSH 1E
CALL <Eack2zLif.GetKeyStatesr
TEST AX, A%

JGE SHORT <BackzLif.loc 41FE00=
PUSH O

PUSH ESI

CALL <BackzLif.EndDialog>

PUSH BackZLif. 016BZ4E0

PUSH ESI

CALL <BackzLif.GetPropks

MOV EBX,EAX

TEST EBX,EBX

JE SHORT <BackZLif.loc_41FEZ3=
MOV EAX, [ARG.4]

PUISH EAX

MOV EAX, [ARG. 3]

PUUSH EAX

PUSH EDI

PUISH ESI

PUISH EBX

MOV EAX,DWORD PTR DE: [EBX]
CALL DWORD PTER D3: [EAX]
MOV [LOCAL.1],E&X

MOV EAX, [LOCAL.1]

POP EDI

POP ESI

POP EBX

POP ECK

POP EEP

RETH 10

The structure is the classical switch.case, where different cases
important for us is the WM_INIT_DIALOG message handler:

sub_41FDEC

“BackZLif.alScreendlg=
Ei¥ Holds the receiwved windows msqg
“BackZLif.alScreendlg=
“BackZLif.alScreendlg=

Switch (cases Z..111)

“BackZLif.alScreendlg=

loc_41FDS&; Case 10 (WM _CLOZE) of switch €
[hWnd = 0171802ZC
EndDialog
(WHM_DESTROY) of switch

hilnd = 01l7180ZC
GetPropl
“BackZLif.alScreendlg=

[loc_4lFD90; Caze 2

“BackZLif.alScreendlg=

“BackZLif.alScreendlg=

hilnd = 017180ZC

[Property = "SELF_"
RemovePropl

loc_41FQCE; Case 110 (WM_INITDIALOG)) of s

Property

Wimd = 01718020
SetPropl

BackZLif. 01630000

BackZLif. 01630000

“BackZLif.alScreendlg=

loc_41FDEC; Case 111
GetHeyitate

(WM_COMMAMD) of switc

hilnd = 0171802ZC
EndDialog
[loc_4lFEDD; Default case of switch 0LlEAFDT

[Result =0

hilnd = 0l7180ZC
GetPropl
“BackZLif_ alcreendlg=

“BackZLif_ alcreendlg=

“BackZLif_ alcreendlg=

“BackZLif_ alcreendlg=
loc_41FEZ3
BackiZzLif.01&30000
BackiZzLif.01&30000
BackiZzLif.01&30000
BackiZzLif.01&30000
BackiZzLif.01&30000

handle different messages. What is

PAGE 34

|

ARTEAM EZINE

; loc_41FDC6; Case 110 (WM_INITDIALOG) of switch 013BFD70
and especially the call [EAX] that jumps out of the DIigProc.
016AFDE8 |. FF10 CALL DWORD PTR DS:[EAX] ; <Back2Lif.sub_41F7EC>

| then placed a BP to this location and saw where the program is jumping, which is the value of EAX. This
is the real message handler of the dialogbox. The previous code is just code stubs placed by the
compiler. What the programmer wrote starts at the call we just identified.

The program calls the call at 016AF7EC which contains another switch-case to handle windows
messages.

Remember that we are following the WM_INITDIALOG, we will concentrate on the corresponding case:

016AFSEC| . &A 00 PUSH 0O Timerproc = NULL

016AFBEE| . &% ES030000 |PUSH 3EZ Timeout = 1000. ms

01c6AFSF3| . 6&A &F PUSH &F TimerIDr = &6F {(111.)

016AFSFE| . 56 PUSH EST hilnd = 00310686 ('About', class='§32770',p
016AFEFE EZ AS58FEFF |CALL <BackiLif.SetTimer: SetTimer

01&AFSFE &4 00 PUSH 0O lParam = 0

01&AFSFD &4 00 PUSH 0O wParam = 0

01&AFEFF &8 13010000 |PUSH 113 Message = WM TIMER

016AF304 13 PUSH EST hilnd = 310686

016AF305 E3 SZ68FEFF |CALL <BackZLif. M, A SendMessaged

As you can see here there's a call to SetTimer with a 100 ms seconds timeout, this is one of the 14 timers
we discussed before (for a total of 14 secondss). Just after SetTimer there's a call to SendMessage which
sends a WM_TIMER message in order to let the application immediately handle the timer.

The patch number 1, consists in fixing this SetTimer call and setting the timer's timeout to 0 msec, like the
following:

Patch 1:

016AFZSEC 6A 00 PUZH O Timerproc = NULL
016AFSEE 6A 00 PUSH O Timeout = 0. ms
016AFEFO 20 NOP

016AFEF1 20 NOP

016AFEFZ 20 NOP

016AFEF3 64 &F PUSH &F TimerID = &F (111.1}
016AFEFE 1133 PUSH ESI hilnd = 00310686 (‘'About', class='§32770',ps
016AFEFE E2 AS6SFEFF |CALL <BackzZLif.SetTimer> LietTimer

016AFEFE 6A 00 PUSH O flParam = 0
016AFSFD 6A 00 PUSH O wParam = 0
016AFEFF 658 13010000 |PUSH 113 Message = WM _TIMER
016AF204 1133 PUSH ESI hilnd = 210686
O16AF205 EZ SZ6S2FEFF |CALL <BackZLif. SendMessagelds LiendMessagel

Doing this way the program executes normally its timers, but it does them instantly!

We can now place a breakpoint into the case of WM_TIMER where the program does an interesting call
to KillTimer, this function is called when the delay imposed by shareware nag is over.

018AFATT| .. 7F 33 JG SHORT <BackZLif.loc_41FAACE

018AFATS| . 6BA &F PUSH &F TimerID = &F (111.}

016AFATE 13 PUSH ESI [hWnd = 00310686 ('About', class='§32770"', ps
016AFATC ES 6366FEFF |CALL +“BackZLif KillTimer> FillTimer

Just after the call to KillTimer the program does a series of graphic GUI system calls to set fonts, look &

feel.

ARTEAM EZINE

PAGE 35

018AFATT| .. 7F 33 JG SHORT <BackZLif.loc_4lFALCx

018AFATS &L &F PUSH &F TimerID = 6F (111.

016AFATE 13 PUSH E3I [hWnd = 00310686 {'About' class='§3Z770' p=
018AFATC EZ 6366FEFF |CALL <BackZLif.KillTimer> FillTimer

016AFAS] 8045 FC LEA EAX,DWORDL PTE SS: [EEP-4]

016AFASY EZ OB2CFEFF |CALL <BackZLif.sub_ 403694

016AFASS &4 FF PUSH -1 rEnable = TRUE

O15AFASE GA 54 PUSH &4 ControlIl = &4 (1l0O0.)

018AFASD 13 PUSH ESI [hWnd = 00310686 {'About' class='§32770'
016AFASE EZ Fl6S5FEFF |CALL <BackZLif.GetDlgltems GetDlgltem

016AFASZ L0 PUSH EAX hilnd = 018ADS7C

016AFASY EZ AZESFEFF |CALL <BackZLif.EnableWindows LEnablelindow

016AFASS g4 00 PUSH 0O [ShowState = SW_HIDE

016AFASE &3 ES030000 |PUSH 3EZ ControlIl = 3E8 (1000.

016AFALD 13 PUSH ESI [hWnd = 00310686 {'About' ,class='§32770'
016AFALL EZ DESSFEFF |CALL <BackZLif.GetDlgltems GetDlgltem

016AFALE L0 PUSH EAX hilnd = 018ADS7C

018AFALT| . E8 1867FEFF |CALL <BackZLif.Zhowllindows L Showlindow

018AFALC| = SE45 FC MOV EAL¥,DWORD PTR 22: [EEP-4] loc_41FAALC

O015AFALF| . ES8 Z040FEFF [CALL <BackZLif.@@L3trToPCharfgurxliinsiStrings

01sAFAE4| . 50 PUSH EAX rrext = "ivxF734x01%x0ETRecoverDialogh x900E
O01sAFAES| . &8 ES030000 |PUSH 3EZ ControlIl = 3E8 (1000.

OlEAFABA| . 55 PUSH ESI hilnd = 00310656 {'About' class='§32770' p:s
015AFAEE| . E& E466FEFF |CALL <BackZLif.ZetDlgltemTextis LietDlgltemTextl

018AFACO| .. EB 44 JMP SHORT <BackZLif.loc 41FBO&=

018AFACZ | = 6&6:8B45 14 MOV A, WORD: PTR SS5: [EEFP+14] loc_41FACZ; Case 111 (WM _COMMAND) of switc

Given that these functions are useless for us (lbecause we want to skip the dialog and if doesn't look nice
is the same), we can use this space as a code cave where to code our patch number 2.

Particularly what we will change is the code between 016AFA89 and 0146AFABB. We moved to the top
the final actions of the original code that were between 016AFAAC and 016AFABB and the modified the
code is added just after (from 016AFA9D to O16AFABF). The new code simply calls SendMessageA
posting a WM_COMMAND with wParam=64.

The new code becomes:

Patch 2:

O16AFATT .« 7F 33 JG SHORT <BackZLif.loc 41FAACH

O16AFATS . 64 &F PUSH &F TimerID = 6F (111.

016AFATE . 1133 PUSH ESI [hWnd = 003210686 {'About', class='#32770"',p
O15AFATC| . E8 6366FEFF |CALL <BackZLif.FillTimer® FEillTimer

016AFAS]L - 8045 FC LEA EAX,DWORD PTE 25: [EEP-4]

01cAFASY . EZ OB3CFEFF |CALL <BackZLif_ sub 4036594:=

016AFASS . 8B45 FC MOV Eix,DWORD PTR S55: [EEP-4]

O16AFASC . EZ 4340FEFF |CALL <BackZLif. @@LEtrToPChariggrxliinsiString=

016AFAS]L . i3u) PUSH EAX Text = "i\xF?j\xDl\xDETRecoverDialog\x90ﬁ
016AFASEZ . 68 E2030000 |PUSH ZES ControlIl = 3E8 (1000}

016AFAST . 1133 PUSH ESI hilnd = 002310686 ('About' , class='§3Z770',p
016AFASE . E2 D7EEFEFF |CALL <BackZLif_ SetDlgltemTexth= SetDlgltenTextl

016AFASD . 6A 00 PUSH 0O lParam = 0

016AFASF . BA 64 PUSH 4 wParam = 64

0l1cAFAAL . 68 11010000 |PUSH 111 Message = WHM_COMMAND

01cAFALEG . 1133 PUSH ESI hilnd = 310686

016AFAAT . EZ2 BOSEFEFF |CALL <BackZLif.SendMessagelr SendMessageld

0l1cAFAAC| = 890 NOP loc_41FAAC

016AFAAD . 20 NOP

016AFAAE . 20 NOP

016AFAAF . 20 NOP

016AFAROD . 20 NOP

016AFARL . 20 NOP

016AFARZ . 20 NOP

016AFARZ . 20 NOP

01cAFAR4 . 20 NOP

016AFARS . 20 NOP

016AFARG . 20 NOP

016AFART . 20 NOP

016AFARS . 20 NOP

016AFARS . 20 NOP

O1cAFABA| . 20 NOP

016AFAEE . 20 NOP

016AFARC . 20 NOP

016AFARD . 20 NOP

016AFARE . 20 NOP

016AFAREF . 20 NOFP

016AFACO .. EB 44 JMP SHORT <BackZLif.loc 41FBO&E=

O16AFACZ| = 6B&6:8B45 14 MOy A3, WORD PTE S55: [EEP+14] loc_41FACZ; Case 111 (WM COMMAND) of swit

Essentially | moved a piece of the original code on the top of the code piece to modify and | then
added a call like SendMessage (ESI, WM_COMMAND, 64, 0)

ESl is by definition for a DIgProc the window's handle. Sending a WM_COMMAND message makes the
system to call another time the DigProc (nested call) and jumps to the WM_COMMAND case, with a
wParam (stored in EAX) equal to 64.

The following is the piece of code which is executed:

m

ARTEAM EZINE

01caFacz| = BE6:8B4E 14 MOV A, WORDL PTR S55: [EEP+14] loc_41FACZ; Case 111 (WM COMMAND) of switqg
O01cAFACE | . 66:83E8 &4 SUE A, 54

01sAFACA| .. 74 08 JE SHORT =BackZLif.loc_ 41FADd4:>

O1sAFACC| . 66:83E8 &4 SUE A, 54

01cAFADO| . 74 1D JE SHORT <BackiZLif.loc 41FAEF>

01sAFADE| .. EB 32 JMP SHORT <BackiLif.loc_41FEO&x

01cAFAD4 | = §37B 14 00 CMP DWORD PTR D3: [EBX+14],0 loc_41FiDd4

01sAFADE| .. 7F 2C JG SHORT =BackZLif.loc_ 4l1FBO&>

01cAFADA| . 6A O1 PUSH 1 Bezult = 1

01sAFADC| . 56 PUSH E3I [hWnd = 00310686 {'About', class='§32770' pg
01cAFADD | . E8 GEZ6SFEFF |CALL <BackiLif. EndDialogs EndDialog

As you can see AX==64 and [EBX+14] (which is one of those values required to following working of the
program) is already set to 0 by previous calls nested into the nag. The result is that the EndDialog is
called.

The result is that the dialog appears for a moment and immediately disappears, just like if we waited for
the countdown and then pressed "Restore" button.

4. Final Remarks

Doing things this way prevents you from wasting your time analyzing where the nag sets the program
things and so on. You just skip the dialog doing like the user would have done, wait (actually less than
usual because of patch #1), press the button and exit from the nag.

The result of which, is that patching in the way described stops the program from hanging here:

016AE177 |. 8B40 OC MOV EAX,DWORD PTR DS:[EAX+C]
016AE17A |. E8 498BFEFF CALL <Back2Lif.sub_406CC8> ; if [EAX+1C]==0 doesn"t work!

This call in any other case gives problems because EAX is not correctly initialized.

4. Writing OllyDbg Scripts, Buzifer of Team RESURRECTION

Scripts have become a powerful way to automate tasks that sometimes can require a lot of time and
work. Most scripts are written to do some unpacking task and/or find the OEP of protected code. Usually
packers/protectors use a logical way to do their actions. If you know how and write a script, you
basically have a generic way to defeat it. Almost everything you can do in OllyDbg you can do with a
script. The reason behind this paper is for people who never have written scripts and want an
explanation of how it works and why.

1. Things Needed.

To use scripts in OllyDbg a plugin is required. Ollyscript has been updated to ODbgScript (by SHaG &
Epsylon). The scripting language is very similar to assembly. It has about 97 commands which can be
combined and manipulated to do almost everything.

A handy tool for writing scripts is OSEditor, the command list was for the old Ollyscript so | updated it. You
can find this tool and ODbgscript in the supplements package.

2. Variables and a first example

Let's take an example: You want to refrieve the codesize of a program and save it for later use. First thing
is to declare a variable and give it a good name.

var codebase
Or maybe this one
var cbase

Example of bad naming:

ARTEAM EZINE PAGE 37
Tl

var mycoolvariable

var declares a variable; this is needed to store things from a return value, think of variables as boxes.
You use them for storing items. You can name the variable to almost everything except using reserved
words; they are the commands in the scripting language. A good habit is to name things so they are self
explained and comment your code. This improves the readability of the script and makes it much easier
to make changes and track down errors. To write comments use // in the beginning.

To save things the function $RESULT is used. It returns values for other functions. This way we can have
the result saved for later use, Instead of being limited to just save one. It works this way:

Declare variable.

Do some action and store result in $RESULT
Transfer $RESULT to a variable.

An example

//This is an example of retrieving the codebase and display it
//in a msgbox.

var cbase //declares the variable cbase

GMI eip, CODEBASE // Now $RESULT is the address to the codebase
mov cbase, $RESULT //moves the result to our variable

msg cbase //Nsgbox with the value

ret //End script

3. Execute commands

These are some basic run commands.

RUN Execute F? in Ollydbg
STO Execute F8 in OllyDbg.
STl Execute F7 in OllyDbg.
RTR Executes "Run to return” in OllyDbg

4. Conditional jumps.

A script can repeat something until a statement is frue or false. First we compare with the CMP
command.

CMP destination, source

Example:

cmp y, x (variables)
cmp eip, 401000

Jumps that can be used:

JNE Jump not equal

JMP Jump

JE Jump equal

JBE Jump If Below or Equal
JB Jump below

JA Jump above

Example of a script using conditional jumps:

var counter //declares the variable counter

start:

//Putting a “:” after the text transform the text into a name of a label. This is useful

so we can make jumps to specific parts of the code.

cmp counter,10 //Compares the variable counter with 10

ja finish
sto

inc counter

jmp start

finish:
msg counter

ARTEAM EZINE

//jump if above 10
//executes F8 in OllyDbg

//Increase our counter by 1, otherwise it would
//be an endless loop

//1f the counter is lower than 10 we jump back

5. Writing a script to unpack UPX

Searching for a specific sequence of bytes is very useful. The bytes of a Asm command is displayed to

the left in Ollydbg. You ca
other packers like Aspack.

sti
findop eip, #60#

bphws $RESULT, ""x"

run
sti
ret

n also use binary edit to see them. This method can be applied to a couple of

//Executes F7 (step into)

//Searches code starting at addr

//for an instruction, (Find command PUSHAD)
//Wildcards can be used

//Set hardware breakpoint. Available modes are
//7"r" - read, "w" - write or X" - execute.

//Executes F9

//EXit script

Another example: searching for kernel32.LoadLibraryA

find eip, #FF9674840600#

bp $RESULT
esto
ret

//shift

F9

6. Writing scripts to set breakpoints.

All breakpoints in Ollydbg

are supported in scripts.

BC Clear unconditional breakpoint at addr.

BP Set unconditional breakpoint at addr.

BPC Clear unconditional breakpoint at addr.

BPCND Set breakpoint on address addr with condition cond.

BPL Sets logging breakpoint at address addr that logs expression
expr

BPMC Clear memory breakpoint

BPHWC Delete hardware breakpoint at a specified address

BPHWS Set hardware breakpoint. Mode can be 'r" - read, "w" - write or
X" - execute.

BPRM Set memory breakpoint on read. Size is size of memory in bytes.

BPWM Set memory breakpoint on write. Size is size of memory in bytes.

BC Clear unconditional breakpoint at addr.

Example of putting breakpoint on MessageBoxA

start:

gpa '‘MessageBoxA", '"‘user32.dll"

// Gets the address of
cmp $RESULT,O

je notfound

bp $RESULT

the specified procedure in the specified library.

msg "Breakpoint on MessageBoxA™

ret

ARTEAM EZINE PAGE 39

notfound:
msg "No breakpoint on MessageBoxA'
ret

Try to improve the following script to include the following:

GetDlgltemTextA
GetWindowTextA

IstrcmpA
GetPrivateProfileStringA
GetPrivateProfilelntA
RegQueryValueExA
WritePrivateProfileStringA
WritePrivateProfilelntA

This one can be useful to get the correct breaks when serial fishing. Included in the supplements there's a
list of the commonly used API calls for different tasks..

7. Using flags
ICF Carry
IPF Parity
IAF Auxiliary carry
IZF Zero flag
ISF Sign
ITF Trap
IIF Interrupt
IDF Direction
IOF Overflow

Using flags, the following script will execute F7 commands in OllyDbg until Zeroflag is 0.
var counter

start:

cmp 1ZF,0

je end

inc counter

sti

Jjmp start

end:

msg “'Zeroflag is 0"
8. Final Remarks

| hope you have got a basic understanding of how scripts work and confinue to practice to code. As
soon as you understand the basics the real fun begins.

PAGE 40 V. ARTEAM EZINE
£ A8

5. Utilizing Code Injection on an ACprotected
application, condzero of ARTeam

1. Introduction

Today's target will deal with 1Click DVD Copy v5.0.2.9. protected by ACProtect or as it's now known
Ultraprotect.

What is ACProtect?
ACProtect is a software protection application that allows developers to protect software against
cracking with special anti-crack techniques under all Windows platforms.

| particularly got a kick out of reading this bullet from the ACProtect website:
http://www.ultraprotect.com/

d finished

Many Software Vendors / Developers make the mistake, when choosing Software Protection, of not
protecting ALL their assets. Protecting the main application’s module is sometimes not enough. There are
many instances, where an application makes use of what I'll call “Helper” dli(s), not to be confused with
System dlI's. In many cases, these helper dil's are not protected, or if they are, not protected to the same
degree as the main module.

We will utilize a very powerful and often overlooked technique in overcoming the limitations of this

software, namely code injection. We can utilize a certain helper dll (vso_hwe.dll) fo inject code into the
process.

2. Sowhatis Code Injectione

The following excerpts on Code injection were taken from the following link (where you can read more):
http://en.wikipedia.org/wiki/Code_injection

Code injection

From Wikipedia, the free encyclopedia

Code injection is a technigue to introduce (or "inject") code into a computer prograrm or system by taking advantage of the unenforced and
unchecked assurmptions the systern makes about its inputs.

The purpose of the injected code is typically to bypass ar modify the originally intended functionality of the program. YWhen the functionality
bypassed is system security, the results can be disastrous.

Uses of Code injection:

Malevolent: We will not discuss this here.

http://www.ultraprotect.com/
http://en.wikipedia.org/wiki/Code_injection

ARTEAM EZINE PAGE 41

[ELL]
Benevelent

Code injection may be used with relatively good intention in some cases. For example, a user who wishes to change or tweak the behavior of
a prograrn or systemn to meet their needs might use code injection to trick the system into behaving the way they would like without "hurting
anyone". For example:

= |nclude a colurmn in & search results page that wasn't included in the original design bot saves a bunch of work now.
= Filter, order, or group data by a field not exposed in the default functionality.

Typically, users resort to this sort of work-around for one of these reasons:

= Modifying the software to function as desired is impossible, or
= Maodifying the software is prohibitively costly, or
= Maodifying the software is a frustratingly painful process.

This use of code injection is heavily frowned upon by the development comrmunity as a whole, and is typically called a kludge or hack.

Some software products allow or even promote the use of code injection to "enhance” their products. Usoally this is because the code
injection solution is less expensive to implement than new or specialized product features. The side effects and unaccounted implications of
this can be very dangerous.

In general, the wellkintentioned use of code injection is discouraged.

Ahhh... this is perfect for our solution!

Some things to keep in mind. Timing is everything when we are modifying a process’s memory using an
indirect approach such as code injection. If using an external dll fo infroduce code injection, we can do
one of three things.

1. Does the dll load when our target is executed? If yes, then we can make the decision to choose
a particular function within the dil to hook for our injected code. Create a code cave and
patch the beginning of the function to jump to the code cave, perform some processing,
maybe insure that we only execute our changes once via a conditional switch, and jump back
to the function we hooked.

2. When the dll loads, is the target’s code unpacked and exposed to external modifications? If yes
(as we will do in this example) create a code cave with our code and change the original OEP
to point to our new code cave and simply jump to the original OEP after we're done.

3. Some combination of the above.

3. Solution

Using a debugger, (OllyDbg in this case), uncheck the following options in the Exception tab of the
debugger’s options:

1. Memory Access Violation

2. Ignore also following exceptions or ranges.

Run (F?) the target. It will break on a handled exception and Olly's CPU main thread code section will
look similar to the following:

C2 0400 RETH 4
00340051 342D 29000000 |CHMEF CH.EYTE PTR DS:[29]
no340057 ooon ADD BYTE FTR DS: [EAX]. AL
00340059 oooa ADD EYTE FTRE DS:[EAX], AL
00340058 ooon ADD BYTE FTR DS: [EAX]. AL
0034005D oooa ADD BYTE FTE DS:[EAX], AL

Note: the actual address above may be different on your machine. Take a look at the Stack window
and you see something similar to the following:

I RYEIY YCO12A5B|RETUEN to kernsl3l2 7CB1Z2ASE from 00340000
0012F750(0012F758
0012F754| 00D3CASS | wso_hwe. 00D3CASSE
0012F758(406D1388
O012F75C(00000000
O012F7e0(00000000
0012F764| 0034004E|RETUEN to 0034004E
O012F768| 00000004

PAGE 42 ARTEAM EZINE

This is our first indication that our chosen “Helper” dll (vso_hwe.dll) has been loaded into the process. Also
if you look at the Registers window we have another indication. Look at the EBX register below:

Registers (FFU)

EAX TCI0EBAC ntdll RtlRaiseE ti . . .
v DD0D000D " prEsREmeRtion Note: The address maybe different on your machine. With
EDE D012F758 this in mind, we can Restart the ’rorgfef, bu’r’ this time we will
EET 00DICARS ASCIT “Main® check Break on new module (DLL) in Olly’s Events tab for
ESE 0012F74C debugger options.

EEF 0012F7A48

ESI 0012F7ESR Follow the DLL load events to our chosen dll as seen below
EDI 0O000O0D7 and choose follow entry on the main module:

EIF 0034004E

Base Size Entry Hane File wersion Path
00400000 O02FADDO| DORDZ2000 1C14c Acltualize i rogran Files~LG Sof tware Innowation=~1Click DVD Copy 5%1ClickDwdCopy
00Ce0000{ 00140000 00D3D010| w=0] view memory rogran Files LG Sof tware Innovations~1Click DVD Copy Shweo_hwe dll

73000000| 00026000 73004D00| win=] \jew code in CPU Enker INDOWS~systen3 2 winspool . drw
76390000| 00010000| 7635912C0| inn3; INDOWS system32~imn32 . d11
76E40000| 00020000 | 76E42B69| winmi Dump datain CPU INDOWS systen3 2~winmnm . d11
77120000 0008C000| 77121558 | olear View names Chrl+M INDOWS =ysten32~oleaut3i2 dll

At this point, most of the code section that we are interested in is unpacked. Keep in mind that
Ultraprotect, similar to AsProtect, will not necessarily expose everything, so once again, Timing is critical.

I will quickly jump to the code section of interest. This section (function) performs what I'll call the Boolean
“Is Application Registered / Activated” routine. Set a BP as shown below:

[oosasezs st PUSH EEP

00538829 8EEC MOV EBP,ESP

D0S38EZE| 83CL FO ADD ESF.-10

00S38E2E[53 PUSH EBY

0053882F(3302 XOR EDY,EDX

00538831 8955 FC MOV DWORD PTR SS:[EEP-4].EDX
DOS3EE34| BYEE FE MOV DWORD FTR S5:[EEF-81,EDY
00538837 8945 F4 MOV DWORD PTR SS:[EBP-C].EAX
00538834 33C0 HOR EAX, EAX

Uncheck the Break on new module in the events tab and Run (F?) the target. You will encounter several
exceptions. Simply hit Shift+F? to get past them until we get to our BP. If you follow the code in the
routine, you can see it's doing some serial code / activation code checking. If we follow the return from
this procedure, we notice a TEST AL,AL condition. If we did nothing, then AL == 00. The application will
break on this procedure many times during the course of executing depending on options / features
chosen. If we ran the application normally, we would either get a limitations nag screen and the option
to Continue or a registration screen which would allow you to go no further.

Restart the target again to our BP above. Make the following changes as shown below:

3aco HOR EAX EAX
00538824 40 INC EAX
00538828 (&3 RETH
onsagazc C4F0 LES ESI.EAX
0053882E 53 PUSH EBX

Run (F?) the target. There should be no registration screen this time. Now it's time to implement our code
injection.

Open vso_hwe.dll in OllyDbg utilizing its Request to Load DIl feature. You will see something similar to the
following:

ARTEAM EZINE

PAGE 43

00940010
00940011
00340013
00940016
0094D01E
00340020
no94pozz
n094D027
0094D02C
00940031
00340036
0094D03E
00940040
00340045
0094D044
0094D04C
N034D04E
00940050
00940052
00940054
N094D056

=1

8EEC
83C4 4

B2
E&
B2
Al
E&
A3
Al
A3
B&
A3
E&

18B93400

E0A3F2FF
01

F44EEBE00

206EFZFF

FOs&9600
FC373600
Fd4a69600
DEB79400
FC373600

OE7CFZFF

gECO
oooo
oooo
oooo
oooo
oooo
oooo

FUISH EEF

MOV EBP.ESP

ADD ESP.-3C

MOV EAK,wso _hwe. 0094B918

CALL w=so_hwe 00877400

MOV DL.1

MOV EAX,DWORD PTR DS:[S2AEF4]
CALL w=so_hwe 00873E4C

MOV DWORD PTR DS:[9666F0], EAX
MOV EAX, DWORD PTR DS:[9697FC]
MOV DWORD PTR DS:[9666F4]. EAX
MOV EAX, wveo_hwe. 0054B7DE

MOV DWORD PTR DS:[9697FC].EAX
CALL w=o_hwe 00874C58

MOV EAX, EAX

ADD BYTE PTR DS:[EAX].AL

ADD BYTE PTE DS:[EAX].AL

ADD BYTE PTR DS:[EAX].AL

ADD BYTE PTR DS:[EAX].AL

ADD BYTE FTRE DS:[EAX], AL

ADD BYTE PTR DS:[EAX].AL

Notice there's a whole bunch of binary zeroes beginning at address 0094D04C above. Note the address
may be different on your machine. Note our OEP at address 0094D010. We could change this line and
jump to our code cave or change the OEP using a PE editor which is what we will do in this Tutorial.

Make the following changes as shown below:

60

0094D051 Ele
oo%4pos2 EBE

00940057 36
00940054 36

00940061 D

0094D062 61

0034D063 EEB

28885300
18D3E
(2707 33C040C3

AB

PUSHAD

PUSHFD

MOV ESI. G538828

LEA EDI.DWORD PTR S5:[ESI]

MOV DWORD PTR S5:[EDI].C340C033
FOFFD

POPAD

JMP SHORT w=o _hwel.0094D010

| chose to start at address 0094D050. Note we save our addresses and flags and restore them after our

changes.

Since the address of our intended target should always load at the same address (00400000) in the
process, we can move the hardcoded value of our target’s destination address as shown. We then load
this address in order to make our changes. The bytes (1 DWORD) are moved in reverse order. We then
jump back to our original OEP. Highlight all your changes and be sure to copy them to the executable.

We are not finished yet.

Using a PE editor, we need to change the OEP (Original Entry Point) of this dll as shown below and save

it.

EntruPaint;
ImageB aze:
Size0flmage:
BazelfCode:
Bazelflrata:

Filedlignment;
Magic:

Basic PE Header Information

[Go000050
o0400000
oo740000
o0001000
(B000Ed00

Sectionflignment: | 00007000

0oaoo02aa
o10B

[PE Editor] - c:\program files\lg software innovations\1click dvd copy 5\wso_hwe...

s
Subsystem: 0oa2 J E—

MHurmber0rS ections: naong

TimeD ateStarmp: 24425E15 Sections
Size(iHeaders: Hooao400 ﬂj Directories
Characteristics: AT8E J e

Checkzum: Q0000000 ﬂ —

Size0f0 ptiohalH eader: ODED c
NumDfRvadndSizes: | 00000010 +| -| J”ﬂ
L

Now when we Run the target again, our code will be injected when this dil loads and initializes.

m e "

4. Final Remarks

Code Injection is not very complicated and can greatly simplify the task of modifying the original
infended functionality of the program vs. MUP'ing and fixing, writing a loader, etc...

You may wish to insure that a chosen region of binary zeroes in the dll is not overwritten by the process.
Note: This application calls home with some possibly sensitive information (i.e. UserlD=, MaclD=, etc.) so
you may wish to uncheck the option to Enable Update Notification and do this on your own. | also noted
an application exception upon application exit if | turned off the Enable Update Nofification feature and
had my internet connection disabled. Weird. Hope you enjoyed this paper.

6. Code Obfuscation, zyzygy

1. Abstract

This is just a preliminary stage of investigation so the approach might be crude but it works and may lead
fo better ideas.

Let's begin.

What | understand from Code Obfuscation is that, the code is hidden in the pool of junk data. This frick is
extensively used nowadays in packers.

2. Approach

| propose an approach based on these two tools:

Editor: RADASM
Assembler: MASM32

I will use the following code throughout the article. It does nothing but display 2 message boxes.

.386
-model flat, stdcall ;32 bit memory model
option casemap :none ;case sensitive

include windows.inc
include kernel32.inc
include user32.inc

include shell32.inc

includelib kernel32._lib
includelib user32.1ib
includelib shell32.1ib

.data

caption db "Fine",0
text db "Hi!",0
textl db "Byel!",0

.code
start:

assume fs:nothing ;setting up an SEH in case things go awry
push _seh

push fs:[0]

mov fs:[0],esp

invoke MessageBox,NULL,addr text,addr caption,MB_OK
call @call

@call:pop eax ;delta offset
add eax,OEh ;add eax with the no. of bytes that will land at the actual code.

ZINE : PAGE 45

o a

Jmp eax ;Jump to the actual code to be executed.

dd OOE95564h ;garbage value, random
dd OE9830048h
cmp eax,1 ;actual code
jne next
Jjmp exit
next:
invoke MessageBox,NULL,addr textl,addr caption,MB_OK
exit:
invoke ExitProcess,0

_seh:

pop fs:[0]
mov ebx, [esp+4]
mov esp,ebx
Jjmp next

end start

The code has been commented to guide you the execution flow. Now the garbage codes are:

dd O00E95564h
dd OE9830048h

They mask the actual code. Now that we have the source with us, assemble it and load it in a debugger
(Iused Ollydbg).

00401026 . E8 00000000 CALL testt.0040102B

0040102B $ 58 POP EAX

0040102C . 83C0 OE ADD EAX,OE

0040102F . FFEO JMP EAX

00401031 64 DB 64 ; CHAR =d*®
00401032 55 DB 55 ; CHAR "U*"
00401033 E9 DB E9

00401034 . 0048 00 ADD BYTE PTR DS:[EAX],.CL

00401037 . 83E9 83 SUB ECX,-7D

0040103A . F8 CLC

0040103B . 0175 02 ADD DWORD PTR SS:[EBP+2],ESI

0040103E . EB 13 JMP SHORT testt.00401053

Our main code lies at 00401039. Upon tracing we find that CMP EAX, 1 is executed. If such garbage
codes were present all over the actual code then the result would be a much mangled code. For this
we shall make use of macros.

Our main garbage code will be the macro and then we shall call it wherever we desire fo.

Macro:

garbage macro
db 0e8h,00,00,00,00 ;call to get delta offset

pop eax ;delta offset

add eax,0Ch ;add the necessary bytes to jump to the actual code
Jmp eax ;Jump to the actual code

dw 8965h ;garbage values

dd 70e9a654h ;garbage values

endm

This macro does the job. One point | would like to state is that while calling the APIs, ensure that you use
call keyword rather than the invoke keyword. This will give you more area to add your garbage code.

So here is our new code with the macro:

garbage macro

db 0e8h,00,00,00,00
pop eax

add eax,0Ch

Jmp eax

dw 8965h

dd 70e9a654h

PA

endm

_data

caption db "Fine",0
text db "Hi!",0
textl db "Bye!",0

data db 00h

.code
start:

assume fs:nothing
push _seh

push fs:[0]

mov fs:[0],esp

ARTEAM EZINE

invoke MessageBox,NULL,addr text,addr caption,MB_OK

garbage

cmp eax,1l
garbage
je next

next:

garbage
push 0O

push offset caption

garbage

push offset textl
push 0

garbage

call MessageBox
garbage

push 0

garbage

call ExitProcess

pop fs:[0]
garbage

mov ebx, [esp+4]
mov esp,ebx
garbage

Jjmp next

_seh:

end start

As you can see, | have freely used the macro and upon assembling and loading it into a debugger, this
is what you see (only a part):

0040104A
0040104D
00401052
00401053
00401056
00401058
00401059
0040105A
0040105B
0040105C
0040105D
00401060
00401065
0040106A
0040106B
0040106E
00401070
00401075
00401077
00401079
0040107A
0040107D
00401082
00401083
00401086

. 70 74 00

E8 00000000

> 68 00304000
. E8 00000000

. 83C0 0OC

. FFEO

. 65:8954A6 E9
. 70 68

. 0930

. 40

. 006A 00

. E8 00000000

58

. 83C0 oC
. FFEO

ASCII "pt",0

CALL test.00401052

POP EAX

ADD EAX,0C

IMP EAX

DB 65

DB 89

DB 54

DB A6

DB E9

ASCII "pj".,0

PUSH test.00403000

CALL test.0040106A

POP EAX

ADD EAX,0C

JIMP EAX

MOV DWORD PTR GS:[ESI-17],EDX
JO SHORT test.004010DF
OR DWORD PTR DS:[EAX],ESI
INC EAX

ADD BYTE PTR DS:[EDX],CH
CALL test.00401082

POP EAX

ADD EAX,0C

JIMP EAX

; CHAR

e

; ASCIT ™

; CHAR *T*

Fine"

ARTEAM EZINE PAGE 47

00401088 65 DB 65 ; CHAR "e”
00401089 89 DB 89

0040108A 54 DB 54 ; CHAR *T*
0040108B A6 DB A6

0040108C E9 DB E9

0040108D 70 DB 70 ; CHAR "p*©
0040108E . E8 63000000 CALL <JIMP.&user32.MessageBoxA> ;\MessageBoxA
00401093 . E8 00000000 CALL test.00401098

00401098 $ 58 POP EAX

00401099 . 83C0 0OC ADD EAX,OC

Very mangled code. Only when you trace can the actual code be seen clearly.

The more you know about opcode construction the better you will be in coding more complex
algorithms. The stack is a very useful here. You can store the jump locations there for instance.

Consider that the code detects a debugger and with respect to the return value of the function you can
decide to decrypt it accordingly. One of the easiest ways to confuse is use registers to jump. This is
because if we hardcode the jump says:

0044F42E |. 74 06 JE SHORT 0044F436

The assembler will assemble it such that the debugger will display the address 0044F436. But if you
change something like this:

mov eax, 0044F436
Jmp eax

The assembler may or may not assemble the 0044F436 location as there is no hardcoded jump. Before
concluding this article | will present another piece of code, a macro within a macro.

garbagel macro
dw 025FFh
add ebx,26h
db 53h,0C3h
dw 025ffh
endm

garbage macro
db 0e8h,00,00,00,00
pop eax
cmp data,l ;a check will determine whether to take jmp eax/push ebx & ret
db 074h,10h
mov ebx,eax
add eax,13h
db Oebh,0OCh
garbagel
add eax,26h
Jjmp eax
dw 8965h
dd 0560cee8h
db 0Oh
endm

| have coded another macro and am calling it from the first one. If you have a look at the import table,
FF25 in OllyDbg (or any debugger) is commonly used as a JMP DWORD PTR. So | used that as garbage
code.

What we are doing here is loading the correct address to jump in ebx, pushing it on the stack and
refurning. A very common frick. Assemble and load it in your debugger for further analysis.

3. Final Remarks

This is just the basics of the code obfuscation. There are a lot of ideas and concepts that can be used to
obfuscate the code.
I hope this helped you to conceive ideas on this and similar topics.

PAGE 48 ARTEAM EZINE

7. Testing for OllyDbg Using NtYieldExecution, Gabri3l of
ARTeam

1. Introduction

| stumbled across this interesting OllyDbg detection method when | was trying to debug an error in a
small program | was writing. However, when debugging the program in OllyDbg | found that | could not
replicate the same results. This led me to dig deeper...

2. Analysis

The API function that was giving me frouble was NtYieldExecution. It was officially infroduced in NT 4.0,
but according to the metasploit SYSCALL page?!, it may have been undocumented and available in SP
3. Either way the functions purpose is the same. NtYieldExecution will pass execution to another running
thread, giving up it's scheduled CPU time.

There is no documented return for NtYieldExecution, but it does return a result stored in EAX. It was this
result that changed depending on whether or not the program was inside of OllyDbg. So | knew that
there was a return value but | didn't know what it meant. For a better idea of how NtYieldExecution
functions we can first look at it in OllyDbg:

7CO0EA47 > B8 16010000 MOV EAX, 116 ;Move NtYieldExecution Syscall
;Number into EAX

7C90EA4C BA OOO3FE7F MOV EDX, 7FFE0300

7C90EA51 FF12 CALL NEAR DWORD PTR DS:[EDX] ;ntdll._KiFastSystemCall

7C90EA53 Cc3 RETN

If you were 1o step into KiFastSystemCall we would see that it executes a SYSENTER. This enters the kernel
system call that was specified in EAX. EAX in this case was 116 which is the value for NtYieldExecution.
Because the function is located in the kernel we can't dig any deeper with Olly, so we cannot find the
return value.

We could use SoftiCE or another Ring0 debugger to examine NtYieldExecution at the Kernel level. But
rather than go through all that frouble we will check a site that has already done the hard work for us:
http://www.winehg.com

“Wine is an Open Source implementation of the Windows API on top of X and Unix. Think of Wine as a
compatibility layer for running Windows programs. Wine does not require Microsoft Windows, as it is a
completely free alternative implementation of the Windows API consisting of 100% non-Microsoft code.”

While the code that Wine uses is not “Microsoft's” it still functions the same. And, even better, it is all open
source and documented. Lets take a look at their implementation of NtYieldExecution:
http://source.winehg.org/source/dlis/ntdll/sync.c2v=wine20050211#L767

765 /* NtYieldExecution (NTDLL.@)766 */
766

767 NTSTATUS WINAPI NtYieldExecution(void)
768 {

769 #ifdef HAVE_SCHED_YIELD

770 sched_yield();

771 return STATUS_SUCCESS;

772 #else

773 return STATUS_NO_YIELD_PERFORMED;
774 #endif

The code above is very easy to understand we can see that NtYieldExecution actually does return a
value based on whether it can vyield its CPU cycles to another program. It returns either
STATUS_NO_YIELD_PERFORMED if it was unable to yield its CPU cycles or STATUS_SUCCESS if it successfully
passed its cycles to another thread.

21 http://www.metasploit.com/users/opcode/syscalls.html

http://www.winehq.com/
http://source.winehq.org/source/dlls/ntdll/sync.c?v=wine20050211#L767
http://www.metasploit.com/users/opcode/syscalls.html

ARTEAM EZINE y PAGE 49
'

| would like to cover quickly that NtYieldExecution may have been implemented slightly differently on NT
machines. On XP NtYieldExecution can return 2 values. In my tests on NT it seems to only return the
STATUS_SUCCESS value, rendering this test unusable on NT machines. We also have this implementation
of NtYieldExection found by Shub-Nigurrath22:

http://www.koders.com/c/fidD6698ESEFC 18COEBODSD446FE74EAEEQE47347EDS.aspx2s=NtYieldExecution

NTSTATUS STDCALL
NtYieldExecution(VOID)

PsDispatchThread(THREAD_STATE_RUNNABLE) ;
return(STATUS_SUCCESS) ;

}

So it looks like this test will only work correctly on XP machines where the implementatfion of
NtYieldExecution returns 2 values. We can use the Wine source to discover the values for both of the
STATUS_NO_YIELD_PERFORMED and STATUS_SUCCESS return values:
http://source.winehqg.org/source/include/ntstatus.h2v=wine20050211#L114

114 #define STATUS_NO_YIELD_PERFORMED 0x40000024
30 #define STATUS_SUCCESS 0x00000000

So here we discover the two results we receive from NtYieldExecution. EAX = 0 when we successfully yield
CPU cycles, and EAX = 40000024 when no cycles were yielded.

With this knowledge gained we can actually develop a test for Olly using this API function.

3. Coding

We will be developing our test as a DLL plugin for the eXtensible Anti-Debug Tester written by Shub-
Nigurrath. The eXtensible Anfi-Debug Tester (xADT), is located at http://releases.accessroot.com

Our DLL will consist of 3 parts; each part performs a test that returns a different result based on what
computer it is running on and whether or not it is in a debugger

Why 3 partsg | had developed this test and | thought that | was able to get a consistent result inside a
debugger and a different result outside of a debugger. | then tried it on other XP machines and received
different results all together! So | had to rewrite it again with multiple parts. Each test in each part is
performed multiple times to help eliminate false positives. By implementing 3 parts and multiple tests we
can successfully determine whether or not the program is operating inside Olly.

The following is my development of the plugin. | am going to skip the trial and error, and just give you the
facts and the results.

Basically | encountered 2 types of computers. The results of each part are based on the type of
computer you are running and the test performed. | do not know the physical or technical differences
between types 1 and type 2 computers. These are just results based on observations and tests. Keep in
mind that false positives CAN occur from time to time; this means that the EAX will contain 0 even if it is
outside Olly. It happens from time to time when there is a high load on the system. We will take as many
precautions necessary to eliminate false positive, but they may still occur. If this approach was to be
used in an external protection or program then | would recommend increasing the number of times
each part is repeated giving you a better chance to dodge system load. You can also repeat the whole
test multiple times throughout program execution, and then see if there is an occurrence of a debugger
not being detected. Luckily all the false positives seem to go in one direction; | have never had an
occurrence where the program said it was NOT debugged when it was so. So if a debugger was not
detected at least once across multiple runs then the program is most likely not being debugged. There is
still a possibility that some “false” positives are not so false. | have noticed that some of them can occur
when you have OllyDbg open and idling at a breakpoint. While the xADT program is not being explicitly
debugged there is still the possibility that it is detecting an open debugger.

Anyway, we are going to ignore any false positives for this explanation. | called NtYieldExecution 2 ways.
The first way is by trying to create a process but passing the CreateProcess call an invalid executable file
name. The second way is by calling CreateProcess and passing it the path to a valid executable. Here |
will try and cover the different reactions | received from type 1 and type 2 computers when calling

22 through the search engine www.koders.com

http://www.koders.com/c/fidD6698E8EFC18C0EB0D5D46FE74EAEE9E47347ED5.aspx?s=NtYieldExecution
http://source.winehq.org/source/include/ntstatus.h?v=wine20050211#L114
http://releases.accessroot.com/
http://www.koders.com/

PAGE 50 ARTEAM EZINE
Tl

NtYieldExecution in those 2 different ways. | will also cover how they results can be interpreted and used
to determine if it is inside Olly.

Lets say that when EAX!=0 then that means NO
And when EAX=0 that means YES

1. Type 1 computers will always return NO when you call NtYieldProcess outside of a debugger

2. Type 1 computers will ONLY return YES when you are inside Olly and open a real process and then
call NtYieldProcess

3. Type 1 computer will return NO if you are inside a debugger and call NtYieldProcess without creating
a process

4. Type 2 computers will always return YES when the program is operating inside OLLY no matter how
NtYieldProcess is called

5. Type 2 computers will return YES outside Olly if a real process is opened and then NtYieldProcess is
called

6. Type 2 computers will ONLY return NO when NtYieldProcess is called without creating a process

7. HOWEVER! Type 2 computers will also return YES outside of Olly if a series of processes was recently
created, like happens in PART #2

8. We can use that fact to determine if the program is running on Type 1 computer and inside Olly or
running on Type 2 computers outside Olly

A little cheat table using the above information:

YES YES YES INSIDE OLLY - TYPE 2 COMPUTER
NO YES YES OUTSIDE OLLY — TYPE 2 COMPUTER
NO YES NO INSIDE OLLY —TYPE 1 COMPUTER
NO NO NO OUTSIDE OLLY = TYPE 1 COMPUTER

Now we can begin to develop our Debug test. First thing we are going to do is create a small program
that's only purpose it to close itself. | will call it Justclose. This will be the process our main test program
creates before calling NtYieldProcess.

The following is the code for our small justclose executable. In this program | am going to set its CPU
priority to maximum o have it try and request CPU cycles. Then | will just have it exit, no need to keep it
open.

Justclose.asm:

.386

.model flat,stdcall
option casemap:none

include windows.inc
include kernel32.inc
includelib kernel32_lib

.data?
hinstance HINSTANCE ?

.code

start:

INVOKE GetCurrentThread

INVOKE SetThreadPriority,eax, THREAD_PRIORITY_TIME_CRITICAL
INVOKE GetCurrentProcess

INVOKE SetPriorityClass,eax,REALTIME_PRIORITY_CLASS

INVOKE ExitProcess,EAX

end start

Our dll can now use justclose.exe by creating the process and then calling NtYieldExecution. We can
then monitor the results of the function to determine if the program is inside or outside of Olly. The
following is the steps | will take in my DLL and how | interpret the results of each part.

Deroko has written a plugin for xADT in ASM, and the source can be found in the plugin_examples
directory of the program. | have based my dll on the skeleton of his code. The first thing we are going to

ARTEAM EZINE PAGE 51

do is refrieve the full path to our module. We can then modify that path to point to the location of our
previously created executable “justclose.exe”. This gives us a full path to justclose.exe and will allow us to
put it in our plugin directory. Now we can begin on the testing portion of the DLL. The test | perform
consists of 3 parts. | will briefly outline what the part does, and why each part is necessary.

Part #1 of the DLL performs a CreateProcess using an invalid string for the process name
e In every test outside Olly the return in EAX will be 0x40000024
e IfOisrefurned in EAX then the program is operating inside Olly
e However, on some computers this test will return 0x40000024 in EAX even while in Olly that is why
we perform part 2

Part #2 opens a new process called justclose.exe which does nothing except close immediately.
3. However, by just opening a program, execution is now yielded differently
4. On some computers if the return of EAX is not O then it is outside Olly and we can assume that it
is not being debugged
5. However on other computers this test will always return 0 in EAX, inside or outside of Olly, if that
occurs we need to go to Part #3

Part #3 performs a CreateProcess using an invalid string for the process name again

3. However this time the resulfs are counter intuitive.

4. When the program is operating outside Olly, specific computers that returned 0x40000024 in EAX
with PART #1 and 0 when opening a real process in Part #2 will now continue to return 0 for this
part

5. However for other computers that the program is open in Olly that returned a value in EAX with
PART #1 and 0 when opening a real process in Part #2 will now return 0x40000024, the same as
they did in Part #1

6. Soif you consistently receive EAX=0 for part 3 you are operating outside Olly

You can view the final source for the xADT extension NtYieldExecution.asm in the Supplements folder of
the ARTeam ezine.

4. Final Remarks

So we have another Olly detection method, however this one is easily defeated by just constantly
returning 0x40000024 when NtYieldExecution is called. It could be more complicated if the protected
program included something along the lines of this:
http://www.winehg.com/hypermail/wine-devel/2005/08/att-0050/01-foo.c

There was another idea that deroko and | discussed however | did not implement it. It is possible to just
call NtYieldExecution by its interrupt. This would prevent a Ring-3 program from hooking the function. The
call could be implemented through either INT 2E or SYSENTER. Some sample code is provided below:

INVOKE CreateProcess,addrsinvalid,NULL,NULL,NULL,TRUE,00000008h,NULL ,NULL ,addr
startinfo,addr processinfo ;Begin a new process using an invalid name for the
;process name

Xxor edx,edx ;No Arguments Needed

MOV EAX,116h ;Move "NtYieldExecution™ Syscall number into EAX
int 2eh ;Yield Execution to running process using Interrupt
ret ;Return from DebugTestl

DebugTestl endp

Just some things to think about... | hope you found this interesting and enjoyed the read.

http://www.winehq.com/hypermail/wine-devel/2005/08/att-0050/01-foo.c

m e "

8. Coding a Serial Sniffer (Oraculum), anorganix of ARTeam

1. Opening words

First of all, | want to say that if you are an experienced reverser, then this article will look like child's play,
but for people that are new to reversing it will (probably) be useful. | remember how hard it was for me at
the beginning to understand things that were considered “everyone knows why this is done like that”.
This is why | want fo try to explain things in an easy manner, for everyone to understand. Read ahead...

2. Whatis a Serial Sniffer and when to use ite

I know that the term used for this kind of programs is "Oraculum”23, but in this article | prefer to call it a
Serial Sniffer. The purpose of this paper is to cover a situation where you can’t understand the algorithm
of a target or can’t code a keygen for it. Our target here is a simple CrackMe that | wrofe to be able to
show you in practice what needs to be done to defeat this situation. Please remember that the
registration algorithm of the CrackMe is very simple and has no protection; our purpose here is to write a
sniffer, not a keygen.

3. Things needed to get started

The tools:

» OllyDbg
» Borland Delphi (or any other programming language for writing the sniffer)

...and of course, do not forget our target CrackMe.

4. Inside the target

Let's fire up OllyDbg and find the serial check. If you didn’t use PEID before, now you'll know that the
app was written in Delphi:

Target loaded in Olly

0045073C PUSH EBP

0045073D MOV EBP,ESP

0045073F ADD ESP,-10

00450742 MOV EAX,CrackMe.0045055C
00450747 CALL CrackMe.00405BC8

Let's run it and see what we get if we enter a dummy name/serial combination... we get a “invalid code
entered!” message. Open up the "Referenced text strings” window and search for the nasty message.
Place a breakpoint on the registration call, like below and press the “Check” button again:

CALL CrackMe.0040421C
004503F4 JNZ SHORT CrackMe.00450408
004503F6 MOV EDX,CrackMe.00450450 ;ASCII "Code accepted!"
004503FB MOV EAX,DWORD PTR DS:[EBX+2FC]
00450401 CALL CrackMe.0042F44C
00450406 JMP SHORT CrackMe.00450418
00450408 MOV EDX,CrackMe .00450468 ;ASCII "Invalid code entered!™

2 See also the several tutorials of Shub-Nigurrath on the subject, into ARTeam tutorials pages

ARTEAM EZINE

PAGE 53

You will break at 004503EF. Have a look at the EAX and EDX registers... yup, EAX holds the good serial
and EDX holds the dummy serial we entered. It's needless to say that if EAX and EDX were equal, the
program would give the "Code accepted!” message. In this case, this is all the information we need to
code a sniffer — we know that at address 004503EF (from now on, named magic address) EAX holds the
good serial. So let’s proceed to the coding part.

5. Coding a Serial Sniffer with Delphi

To develop the sniffer, | will use Delphi 7 Enterprise. You can use whatever language you like, as long as
you can follow my steps. Before the actual coding part, let’s think for a minute what we need to do:

= start the program in suspended mode

= read the original bytes we are going to patch at the magic address

= write some bytes at the magic address, to make program enter an infinite-loop
= let the program run

= monitor if the program arrived at the infinite-loop (at magic address)

= if previous step is done, suspend the program and sniff the serial from EAX

= restore the original bytes (clear the infinite-loop) and resume the program

The code is not commented 100%, hopefully you will understand:

{---}

const
// this is the code we will write go make
// the program go into an infinite-loop
LOOP: array [0.-1] of Byte = ($EB,$FE);

{---3

function SniffSerial(Pl: PROCESS_INFORMATION; Ctx: _Context): string;
var

X: Cardinal;

Buff: PChar;
begin

// allocate some memory

GetMem(Buff,50);

// suspend the program and get the context
SuspendThread(PI .hThread) ;
GetThreadContext(PI.hThread,Ctx);

// read the value that [EAX] holds (the good serial)
ReadProcessMemory(P1 .hProcess,Pointer(Ctx.Eax) ,Buff,50,X);

// set the result and free the buffer
Result:=Trim(Buff);
FreeMem(Buff);

end;

procedure TfrmMain.btnSniffClick(Sender: TObject);
var

P1: PROCESS_INFORMATION;

SI: STARTUPINFO;

Context: _CONTEXT;

Buffer: PChar;

ORIG: array [0..1] of Byte;

S: string;
W: DWORD;
begin

// disable button (avoid starting target multiple times)
btnSniff._Enabled:=False;

// allocate some memory and initialize vars
GetMem(Buffer,255);
FillChar(P1,SizeOf(TProcessinformation),#0);
FillChar(Sl,SizeOf(TStartupinfo),#0);
Sl.cb:=SizeOf(SIl);

ARTEAM EZINE

Compile the source attached with this article if you can’t manage it. Hopefully you will have a nice and
running Serial Sniffer.

6. Final Remarks

Well, this is the end of this story; | hope all the things said here will be useful in broadening your
knowledge. | suggest as usual using this material for learning purposes only, and not for cracking
programs. Thank you for reading this article!

ARTEAM EZINE PAGE 55

9. Ring 3 debugger detection via INVALID HANDLE
exception, deroko of ARTeam

1. Introduction

Well | discovered this during my little journey with ExeCryptor, | also made a huge mistake, which showed
as not been as huge as | was expecting if to be.

Story goes... | was playing with ExeCryptor and | patched CreateThread with retn just to avoid new
thread creation, of course, TLS callback was also patched after 1st one gets executed, just to simulate
existence of one thread. Of course, ExeCryptor ran perfectly without a problem, then | moved to
OllyDbg and applied same frick. But after passing exceptions to debuggy, suddenly ExeCryptor process
exited, (I also used hook in ntoskrnl.exe!NtOpenProcess and NtReadVirtualMemory to deny read of olly
process memory), but without retn in CreateThread it worked without a problem. Also my nonintrusive
oepfinder worked without a problem. So, the only thing that was logical is that somehow EAX has a
random value after hook CreateThread is called.

Looking at conditions in my case | had this situation: nonintrusive tracer hooks CreateThread but it works
without a problem, and Olly also hooks CreateThread but it fails. So | used bpx in CreateRemoteThread
(internally called by CreateThread) as 2nd layer APl to avoid BPX detection in ExeCryptor. When | break
at CreateRemoteThread | assembled simple patch to return from it. Then run app and soon Exception
invalid handle occurred. | passed exception with shift+f9 and b00Om, thread exception handler was
called and resulted in process termination (e.g. it wasn't supposed to occur at that point).

2. Coding

Then | wrote simple program to see if this is new anti-debug trick:

push OdeadcOdeh
callw CloseHandle

Yep, it seems like exception is generated when this is ran trough ring3 debugger (olly, debug loader
etc...) but under normal conditions this would never occur. So | was sure | have discovered a new anti-
debug ftrick, ultimate (you will see why) anti-debug trick. After giving hint fo one person, that person
showed his understanding for this anti-debug frick, mostly lame understanding. I'm glad that protection
developers have same understanding of windows system as that person and they didn't see real
potential of this trick.

I'l now show you how stupid software developers are and those whom were using my hints to promote
themselves on every single forum.

There is Natfive APl known as NtRaiseException which is exported in ntdll.dll, its prototype is very simple:

NTSYSAPI NTSTATUS NTAPI NtRaiseException(
IN PEXCEPTION_RECORD ExceptionRecord,
IN PCONTEXT ThreadContext,
IN BOOLEAN HandleException);

With this native APl you may raise exception of any kind and force thread exception handler to be
executed. But here comes a catch, in normal condition CloseHandle will never raise
EXCEPTION_INVALID_HANDLE, neverlll But NtRaiseException can force thread exception handler to be
called when EXCEPTION_INVALID_HANDLE is generated.

If you are debugging with ring3 and EXCEPTION_INVALID_HANDLE occurs due to dummy argument
passed to CloseHandle you should confinue execution with DBG_CONTINUE flag passed to
ContinueDebugEvent, or in other words, press F9 in Olly. But when NtRaiseException is used to raise
EXCEPTION_INVALID_HANDLE you should use DBG_EXCEPTION_NOT_HANDLED and force thread
exception handler to be called.

In other words one fime you have to use DBG_EXCEPTION_NOT_HANDLED in other case you should use
DBG_CONTINUE (shift+f9 aond f9). So if you ignore excepfion and pass it with
DBG_EXCEPTION_NOT_HANDLED, the one raised by NtRaiseException will work okay, but if you pass

PAGE 56 ARTEAM EZINE

exception to debugy when it is generated by CloseHandle you will call thread exception handler when it
is not supposed to occur, in such way SEH which might be used to decrypt part of code will actually
decrypt wrong part of code, or simply redirect you to ExitProcess.

To prove my theory and show how protection developers are stupid | will show you a little proof of
concept code, | even heard that some of them used this frick after it was leaked but only with
CloseHandle(dummy_handle), so lame, so lame, | would never protect my software with such
protection, never:

start: push offset sehhandlel
push dword ptr fs:[0]
mov dword ptr fs:[0], esp
mov ctx.context_ContextFlags, 10007h
mov ctx.context_esp, esp
mov ctx.context_eip, offset __ debugged
mov ctx.context_segCs, cs
mov ctx.context_segDs, ds
mov ctx.context_segFs, fs
mov ctx.context_segEs, es
mov ctx.context_segSs, ss
push 1
push offset ctx
push offset exception

callW NtRaiseException

__safe0: pop dword ptr fs:[0]
add esp, 4

push offset sehhandle2
push dword ptr fs:[0]
mov dword ptr fs:[0], esp

push OdeadcOdeh
callw CloseHandle

pop dword ptr fs:[0]
add esp, 4
push 40h

push offset stitle
push offset sabout
push 0

callW MessageBoxA

push 0
callw ExitProcess

sehhandlel: Xor eax, eax
mov ecx, [esp+0ch]
mov [ecx.context_eip], offset _ safel
retn

sehhandle2: Xor eax, eax
mov ecx, [esp+0ch]
mov [ecx.context_eip], offset __ debugged
retn

__debugged: push 10h

push offset dabout
push offset dtitle

push 0

callW MessageBoxA

push 0

callw ExitProcess
dabout db "*debugged™, 0O
dtitle db "kill your ring3 debugger, and try again®,0
stitle db "*good", O

sabout db "“your are ok, O

ARTEAM EZINE PAGE 57

Oki first we have to fill context struct with needed data, we store there ESP, EIP, segment registers and
exception flags. Note that EIP is set to point to __debugged label, that is because we are telling process
to go there (simulating that exception occurred at that EIP), also we call NtRaiseException passsing to it
pointer of exception code (0c0000008h), pointer to context structure and 1 (bool HandleException, if set
to 1 call thread exception handler), so running this code in OllyDbg with unchecked exceptions will stop
here:

. 2ace HOR ERX, ERY
GE4EiEHs| . EE4C24 BC MOU ECH, DWORDFTR 85 CESF+C1
@BE4E18A7| . Crel BS@@E@8s SA1MOY DWORD FTR DS:[ECK+ES1,poc. B848105A
AA4E1REL| . C3 RETH
. ZECE ®0R EA, EAX
GEaEiged| . SB4C24 B MOU ECH, DWORDETR. §5: CESF+C
GE4E16EE| . CFSl BSP@EEEE C31MOU DWORD FTR DS:[ECK+ES], poc. BE4810CE
AA4E1ECE| . C3 RETH
CEEEIGERE] . &R 16 FUSH 1@
GE4E1ECE| . 62 DD1@4@E8E8 PUSH poc. 38481800
AE4E1ECAH| . 68 EG1@4@84 PUSH poc.3E4818E6
@BEE1ECF| . &R BB FISH &
AE4E1E01| . ES SENGREEE CALL <JMP.&USERSZ.MessageBonA:
QE4E1E06| . &R BB FIISH @
AE4E1E02| . EES 4S00BEEE CALL <JMP.&KERMELZZ.EH itProcess>
AE4E1E00| . 64 65 62 7S &7 6]ASCII “debugoed”, @
BEIEIEEE| . 6B 69 6C EC 28 7IASCII "kill wour rings ™
BE401AFS| . 64 66 €2 75 67 6 ASCII "debugger, and tr”
BE4E110E| . 79 28 61 67 &1 E9ASCII ™u =gain™,.@
BE40110E| . 67 6F EF 64 @@ ASCII "good”, @
AE4E1113| . 79 6F 75 72 28 61ASCII "wour are ok™, @
QE4E111F| §- FF2E &C204888 JMP OWORD PTR DS:L<hntdll.MtRaiseExcept lon>]
BE4E1125| .~ FF25 74304080 JMP DWORD PTR ns [<%KERMEL32.Ex itProcess]
BE46112E| $— FF2S 7ESI@4888 JHF DWORD : [<4KERMELZZ. CloseHandle>]
AE4E1131| 5 FFES 2E384000 JHP DWORD PTR DS [<&SER32. Mez=s29=BosA]
@E4E1137 OE ©&
BE4E1138 @@ OE 88
{l I
Cumnmnd| I;q

| Exception CO00D00Z [IMMVALID HAMDLE] - use Shift+F7/F8/F9 to pazs exception to program

You see, EIP is set to __debugged label, if we press F? (DBG_CONTINUE) we will end up in bad boy
message and ExitProcess, but if we press shift+f9 to call thread exception handler, what will occur in
normal condition when NtRaiseException is called,

we will call sehhandlel which is at : 4010A1h, that part of code wiill redirect execution to __safe0 label in
above source. And we have simulated normal conditions.

But soon we have call to CloseHandle with dummy handle to generate this exception again:

TCOEERSD| EE PLUSH _EEF

TCOEEBSE| BEEC Moy EBP, ESP

FCOBEER4GR| 83EC 5@ SUEB ESF,EA

FCOBEE4S| 894424 BC HMOU DWORDE FTR 55: [ESF+C1, EAR
FCOBEE4Y| ed:fl 12000888 MOL EAX, DWORD PTR FS:L12]
FCOEEER4D| 2E2E A4810668 MO EAX, OWORD PTR D23 CEAX+1A4]
FCO9EEES2| 290424 1Moy CWORDE PTR S%: [ESPI, EAX

TCOBEESA| Cr4424 @4 a0ea0ae | MOU DWORD PTR 55: [ESP+41,8
FCEEEESE| Crddz2d B2 GEe0aasd |MOU DWORD FTR S5: [ESF+E1, 5
FCEEERSS| Cr4424 18 BaE0@aaoa | HMoU DWORD PTR S5: CESF+161, 5

PCOBEEZE| E4 FUSH ESP
CLODEECE| EB aapeane WREE rvolliRT RS SeE e i
"SEE: SEmA=4 FOU ER:. DUORD FTR 55:LESF]

PCOREECT| SEES MO ESP.EEP

PEOBEETS| ED FOP EEP

POOBEETR| 03 RETH

FCOBEBTE| 9@ BOE A=
£ i 1118

Camrmand| (i

E xception CON00003 [IMVALID HAKNDLE] - use Shift+F7/F3/F3 to pass exception to progranm

Oki, CloseHandle generated new exception and NOW we should only press F? (DBG_CONTINUE) and
avoid calling of installed handler which is at : 4010B2h and will redirect EIP to __debugged label.

So to sum this up when the exception is raised via NtRaiseException we have to pass the exception to
debugger with DBG_EXCEPTION_NOT_HANDLED, but when such exception is generated using
CloseHandle we have to pass exception with DBG_CONTINUE. So let me think. You may NOT set OllyDbg
or your debug loader to pass this exception only with DBG_EXCEPTION_NOT_HANDLED or
DBG_CONTINUE, if you do that; you will be caught using this trick. | guess that protection developers and
person whom | gave hint didn't figure this yet, that shows only their knowledge to exploit some bugs in
Windows system. Maybe this isn't a bug; maybe this exception is generated purposely for software

PAGE 58 ARTEAM EZINE

developers to check when they have changed something in their source code during debugging. But
luckily MS didn’t think that this can be used to detect ring3 debuggers, and here you go.

3. Final Remarks

Future protection system should use this exception combined with NtRaiseException in more than 10
places of their protection system, just to avoid a simple passing of this exception to debug.

Also this exception can be generated directly using sysenter and INT 2eh to communicate with
ntoskrnl.exe because CloseHandle (NtCloseHandle) and NfRaiseException are both called via sysenter
and INT 2eh on Win2k systems. Only problem is to determine on which system are you running, but you
can simply open ntdll.dll and read both function from it info some buffer and call them directly. Or use
this macro for XP to call directly native APIs (as | did in prc-ko.xp virus — proof of concept):

@sysenter macro syscall, parameters
local _ @01, _ @@2
push eax

Jmp __0@02
__@@1:

mov eax, syscall

mov edx, esp

dw 340Fh ;sysenter OF34h
__@e2:

call __@e1

add esp, (parameters*4) + 4 ;+ 1 dummy EIP
endm
Well that's all..

10.PEB DIl Hooking, a novel method to hook dlls, deroko of
ARTeam

1. Introduction

This will be a very short article, because I'm only showing the idea and how to do it. There is no need for
me to write 20 pages to show you simple frick called PEB DIl hooking.

2. Method

Before you ask why is this a good method to attack protectors you first have to know how they work!
Every normal protector will hide APIs that it will use during unpacking of our target. It is just how they work;
frying to make a static analysis of a protector is a little bit harder. To be able to communicate with the
kernel, protector has to call some APIs. Most of the times those are the APIs exported by kernel32.dll, and
some protectors are also using exports of ndll.dll to detect debuggers or to fool them. They don’t import
APIs, most of the times they only import one or several APIs just to make PE file win2k compatible (win2k
won't run exe w/o at least one import), instead of using import table, they will use GetProcAddress or
custom implementation of GetProcAddress to find APIs (some using CRC some by names). To get base
of kernel32.dll protectors will use several tricks that are common for locating k32 base:

- GetModuleHandleA/W

- LoadLibraryA/W

- PEBscanning

- K32 address on stack at enfry point

- walking trough SEH chain where last record is pointing to k32.dll
- use MZloop on 1 imported API from k32.dll

Imagine now scenario where each call to GetModuleHandleA (“kernel32.dll") will return address of your
dll, when GetProcAddress or custom implementation of GetProcAddress is used it will actually scan your
dll and locate APIs in it and you may do what ever you want with APIs. To avoid hooking of
GetModuleHandle and Loadlibrary we can go deeper and mess with PEB and actually hijack .dll via PEB
hooking.

ARTEAM EZINE -
~

PAGE 59

Lets take a look what is important for us:

kd> dt nt!_TEB

+0x000 NtTib : _NT_TIB
+0x01lc EnvironmentPointer : Ptr32 Void
+0x020 Clientld : _CLIENT_ID

+0x028 ActiveRpcHandle : Ptr32 Void

+0x02¢ ThreadLocalStoragePointer : Ptr32 Void
+0x030 ProcessEnvironmentBlock : Ptr32 _PEB
+0x034 LastErrorValue - Uint4B

+0x038 CountOfOwnedCriticalSections : Uint4B
+0x03c CsrClientThread : Ptr32 Void

At offset +30h of TEB (Thread Environment Block) is located PEB (Process Environment Block), which will
describe state of process in memory. There is plenty of nice information in PEB, but we are interested in

PEB_LDR_DATA here:

kd> dt nt!_PEB
+0x000 InheritedAddressSpace : UChar
+0x001 ReadlmageFileExecOptions : UChar

+0x002 BeingDebugged : UChar

+0x003 SpareBool : UChar

+0x004 Mutant : Ptr32 Void

+0x008 ImageBaseAddress : Ptr32 Void

+0x00c Ldr : Ptr32 _PEB_LDR_DATA

+0x010 ProcessParameters : Ptr32 _RTL_USER_PROCESS PARAMETERS

PEB_LDR_DATA is a simple structure that will describe the state of each loaded module for this process
(.dlls, main proggy itself), also this structure is being accessed via GetModuleHandle, and ntdlliLdrLoadDIl

(internally called by LoadLibrary) it looks like this:

kd> dt nt! PEB_LDR_DATA

+0x000 Length - Uint4B
+0x004 Initialized : UChar
+0x008 SsHandle : Ptr32 Void

+0x00c InLoadOrderModuleList : _LIST_ENTRY

+0x014 InMemoryOrderModuleList : _LIST_ENTRY

+0x01c InlnitializationOrderModuleList : _LIST_ENTRY
+0x024 EntrylnProgress : Ptr32 Void

These lists are actually used to locate lists of LDR_MODULE or LDR_DATA_TABLE_ENTRY structures which will

describe the state of each loaded module:

kd> dt nt!_LDR_DATA_TABLE_ENTRY
+0x000 InLoadOrderLinks : _LIST_ENTRY
+0x008 InMemoryOrderLinks : _LIST_ENTRY
+0x010 InlnitializationOrderLinks : _LIST_ENTRY

+0x018 DIIBase : Ptr32 Void
+0x01c EntryPoint : Ptr32 Void
+0x020 SizeOflmage - UiInt4B

+0x024 FullDIIName : _UNICODE_STRING
+0x02¢c BaseDI IName - _UNICODE_STRING
+0x034 Flags - Uint4B

+0x038 LoadCount - UInt2B

+0x03a TIsIndex - Uint2B

+0x03c HashLinks : _LIST_ENTRY
+0x03c SectionPointer : Ptr32 Void
+0x040 CheckSum : vint4B

+0x044 TimeDateStamp - UiInt4B

+0x044 LoadedImports : Ptr32 Void

+0x048 EntryPointActivationContext : Ptr32 Void
+0x04c PatchInformation : Ptr32 Void
kd>

Because GetModuleHandle or LoadLibrary will use these lists (as well as some other win apis resposnbile
for modules enumeration) we may fake DIIBase, EntryPoint and SizeOfimage and GetModuleHandle will
refurn base of our hooking .dll. You may already see the weak side of this approach, if we are faking .dll
in PEB, we also have to export same APIs as hooked .dll, if we don't do so GetProcAddress will fail on our
hooking .dll. To make my work easier instead of typing manually all exports of certain .dll | created simple

PAGE 60 ARTEAM EZINE

proggy called dlicreator.c. It will make .asm/.def/.inc skeleton for my hooking .dll and all that is left to do
is to add .dll entry point which will perform PEB hooking and to choose which APIs I'll hook.

Hooking .dll is very simple when you know how to walk through PEB_LDR_DATA, | will show you my hook
from DIIEntry point (weird how people chose to really name entry point in .dll DIEntry, it doesn’t matter as
long as linker knows where is entry point, | use start ©)

public C start

start proc
arg imagebase
arg reason
arg reserved

1st we have to check reason, if it is PROCESS_ATTACH we perform hooking, otherwise, we simple exit from
dll entry point callback:

pusha
cmp reason, 1
jne __e_dllinit

Next step is to locate InLoadOrderModulelist (if you chose other, you will have to calucalte negative
offset to struct start and then you may access modules using your predefined struct, or if you like to make
code less readable use indexing and don’t bother with calculating negative offsets ©)

mov eax, dword ptr fs:[30h]
mov eax, [eax+0ch]
mov esi, [eax+0ch]

Now we have to get base of kernel32.dll so we can walk trough LDR_MODULE and hook our kernel32.dll
(note that I'm using LoadLibraryA, because this is my skeleton, and if I'm hooking some other .dll that is
not loaded | have to use LoadLibraryA before | can hook it):

call LoadLibraryA, offset szkernel32
mov old_dll_base, eax
xchg eax, ebx

Now we simply walk trough LDR_MODULE and we search for our hooking dll, and .dll that we wanna

hook:
_ Ffind_dll: cmp [esi.Im_baseaddress], ebx
je __esiedi
lodsd
xchg eax, esi
Jjmp __Ffind_dll
__esiedi: cmp ebx, imagebase
je __hook
mov edi, esi
mov ebx, imagebase
Jjmp __find_dlIl

At this point edi is pointing to LDR_MODULE of target .dll and esi is pointing to LDR_MODULE of our
hooking .dll, all we have to do is exchange data between these 2 structs so our hooking .dll becomes
our target .dll and vice verse.

__hook: mov eax, ebx
xchg eax, [edi.Im_baseaddress]
mov [esi.Im_baseaddress], eax
add ebx, [ebx+3ch]
mov eax, [ebx.pe_addressofentrypoint]
add eax, Imagebase
xchg eax, [edi.Im_entrypoint]
mov [esi.Im_entrypoint], eax
mov eax, [ebx.pe_sizeofimage]
xchg eax, [edi.lIm_sizeofimage]
mov [esi.Im_sizeofimage], eax

__e_dllinit: popa
mov eax, 1
leave

ARTEAM EZINE y PAGE 61
'

retn Och
endp

Voila, kernel32 is hooked via PEB, here is snippet from LordPE:

,j':] o hwindowshaystem 32t kernel 32 di Q0340000 Q0073000
é] c:hindowshsystemn32iuser32.di 7040000 Q0030000
:i;] c:windowsheestern 324gdi32 dll FYF10000 Qon4e000
Ejﬂ chzhow_timettesthfake k32 dll FCa00000 Q0aF4000

Do you see any difference? Yes you do... original kernel32.dll is now named as fake_k32.dll, and
fake_k32.dll is now kernel32.dll ©

Oki, this attack is good, works great, but we face one big problem here. Our loaded fake k32 won't be
used to fill import table of our target ® It will be used later on when GetModuleHandleA or LoadLlibraryA
is used, which is bad because there are some protectors that will use imports to locate base of
kernel32.dll or other used .dll. Before we come to the solution to this problem we will have to know what
is really going on when a new process is created. It is important, very very important to understand.

| will only briefly describe what is going on, when we call CreateProcessA/W, internally there will be
called NtCreateProcess to map file in memory and also to map ntdil.dll. After this gets done, we are
back to ring3 and then new thread is being created. During Thread creation windows will use APC to call
ntdlllLdrinitializeThunk which is responsible for walking trough import descriptor and will load all needed
libraries and fill IAT. New Thread creation is here:

.text:7C819A3C call _BaselnitializeContext@20
_text:7C819A9C push eax
_text:7C819A9D call ds:__imp__NtCreateThread@32

And in _BaselnitializeContext@20 it will set EIP to point to:

.text:7C8105AF cmp [ebp+arg_14], 1
-text:7C8105B3 mov [eax+CONTEXT.Eax], ecx
_text:7C8105B9 mov ecx, [ebp+arg_8]
-text:7C8105BC mov [eax+CONTEXT.Ebx], ecx
.text:7C8105C2 push 20h

.text:7C8105C4 pop ecx

_text:7C8105C5 mov [eax+CONTEXT.SegEs], ecx
-text:7C8105CB mov [eax+CONTEXT.SegDs], ecx
.text:7C8105D1 mov [eax+CONTEXT.SegSs], ecx
_text:7C8105D7 mov ecx, [ebp+arg_10]
_text:7C8105DA mov [eax+CONTEXT.SegFs], 38h
-text:7C8105E4 mov [eax+CONTEXT.SegCs], 18h
.text:7C8105EE mov [eax+CONTEXT.EFlags], 3000h
.text:7C8105F8 mov [eax+CONTEXT.Esp], ecx
_text:7C8105FE jnz loc_7C814D67

_text:7C810604 mov [eax+CONTEXT.Eip], offset

_BaseThreadStartThunk@8
-text:7C81060E
_text:7C81060E loc_7C81060E:

-text:7C81060E add ecx, OFFFFFFFCh

-text:7C810611 mov [eax+CONTEXT.ContextFlags], 10007h
.text:7C810617 mov [eax+CONTEXT.Esp], ecx
_text:7C81061D pop ebp

_text:7C81061E retn 14h

-text:7C81061E _BaselnitializeContext@20 endp

BaseThreadStartThunk will call the entry point of our new thread, but TLS callbacks are executed from
LdrinitilizeThunk called by APC during Thread creation.

_text:7C80B4D4 push 10h

-text:7C80B4D6 push offset dword_7C80B518
.text:7C80B4DB call __SEH_prolog
_text:7C80B4EQ and dword ptr [ebp-4], O
_text:7C80B4E4 mov eax, large fs:18h

-text:7C80B4EA mov [ebp-20h], eax

___ﬂ;;:E!:;;-'.':iiIIIIIIIIIIIIIIIIIIEr
4

ARTEAM EZINE

-text:7C80B4ED cmp
.text:7C80B4F4 jnz
-text:7C80B4F6 cmp
_text:7C80B4FD jnz
-text:7C80B4FF call
.text:7C80B505 push
-text:7C80B508 call
-text:7C80B50B push
-text:7C80B50C call

dword ptr [eax+10h], 1EO0Oh
short loc_7C80B505
_BaseRunningInServerProcess, 0
short loc_7C80B505
ds:__imp__CsrNewThread@0

dword ptr [ebp+0Ch]
dword ptr [ebp+8]
eax

_ExitThread@4

<-- call entrypoint

Now to force NT loader to load fake_k32.dll instead of real kernel32.dll we will use a little magic here in
LdrinitializeProcess (called by LdrinitializeThunk which is executed using APC):

.text:7C9222F4 mov
.text:7C9222FD mov
- text:7C922306 mov
.text:7C922310 call

text:7C922538 aKernel32 dll:
.text:7C922538
_text:7C922552

word ptr [ebp+var_100], 18h

word ptr [ebp+var_100+2], 1Ah
[ebp+var_FC], offset aKernel32_dll
_LdrpLoadD11@24

unicode 0, <kernel32.dll>,0
align 4

When the thread is suspended APC is not ran yet, at this point we may mess with LdrinitilaizeThunk as
much as we want, APC will be executed once new thread is resumed. At this point we may hardcode
the value of kernel32.dll in our loader and use it to overwrite Unicode string “kernel32.dll” with our
fake_k32.dll and force LdrinitilizeThunk to fill imports of kernel32.dll with our exports from fake_k32.dll. |
personally couldn’t find any good way to scan for this value because there are several occurrences of
Unicode string "“kernel32.dlI” in ntdll.dll and | don’t know if order of *good" strings is changed in older or
newer versions of ntdll.dll. So you will have to find this value by yourself and hardcode it in a loader.

Here is how it looks like in one upx packed executable when loader -b is used (hooking also in

LdrlnitilizeThunk):

001B:00413F77 CALL

001B:00413F7D OR EAX,EAX
001B:00413F7F JZ _00413F88
001B:00413F81 MOV [EBX] ,EAX
001B:00413F83 ADD EBX,04
001B:00413F86 JMP _00413F69

001B:00413F88 CALL
001B:00413F8E POPAD

001B:003A1CD2 JMP
001B:003A1CD8 RET

KERNEL32!GetProcAddress

001B:7C80AC28 MOV EDI,EDI
001B:7C80AC2A PUSH EBP
001B:7C80AC2B MOV EBP,ESP
001B:7C80AC2D PUSH ECX
001B:7C80AC2E PUSH ECX
001B:7C80AC2F PUSH EBX
001B:7C80AC30 PUSH EDI

[ES1+000140A8]

[ES1+000140AC]

[KERNEL32!GetProcAddress] <-- hooked import

Bingo, imports are hooked with my fake_k32.dll and now | can log action of protector w/o a problem.

Well that's it, no more to talk about PEB dll hooking, | hope you got the idea? If not, check the sources,

they will help you ©

If you want to get maximum stealth, erase hooked .dll from list enfries, it is not hard, just requires walking
frough all 3 list entries and unlinking the ones that are pointing to original .dll, in such way you will have
only kernel32 or other .dll loaded while fake_xxx.dll will be gone from modules list.

ARTEAM EZINE

PAGE 63

11.TheMida: no more Ring0?, deroko of ARTeam

1. Introduction

Well old news, TheMida isn't using ring0 anymore to hook IDT or SDT so we may use SoftICE to play with
the new TheMida. Oki, we take some target protected by new TheMida (APIMonitor, SilhouetteFX,
ExactSpent ...) and we start it without SoftiICE and it works, we check IDT in WARK24 and everything is
normal, we check also SDT, yep everything is normal there too.

2. Debugging a target

So we start our SoftiCE and run application. Amazing, debugger detected. Heh, funny, TheMida is
running without a problem in OllyDbg but it can’t run while SoftICE is active. So what is going on?2

Well themida developers have abandoned offensive ring0 driver and they are using now nice, SoftICE
friendly driver, but sfill SoftICE is detected. There are a few tricks to detect SoftICE from ring3:

- UnhandledExceptionFilter
- INT Th

- INT41h

- INT3h

- CreatefFile

- NtQuerySysteminformation

I saw INT Th used and also NtQuerySystemInformation while | was debugging TheMida, INT 1h is used to
simple avoid single stepping. | patched INT Th/INT 41h to DPL of O to avoid SoftiICE detection and also
hooked NtCreateFile to avoid SoftICE detection via CreateFile.

NtQuerySysteminformation is used in TheMida to get base/range of ntoskrnl.exe, hal.dll and win32k.sys
drivers (main windows OS components ©), didn’'t see for what it is using them but it was obvious that it
isn’t using ring3 to detect SoftICE. So the only solution is that TheMida is using its own drivers to detect the
presence of SoftICE. There are a few tricks to detect the presence of SoftlCE using a driver.

SafeCast, for example, uses distance between INT 1/INT 3 and DR7 to detect the presence of SoftICE, but
the story with TheMida is much more interesting!

Oki, first we have to see how message looks like (not very descriptive):

-

AIT Protection System

A debugger has been Found running in wour syskem,
Flease, unload it From memory and restart your program,

If you break in MessageBoxA you will only see that a retn is taking the program to ExitProcess: hunting the
debugger detection will not be an easy task!

Now let's see what IOCTL codes is TheMida using before it detects our debugger:

] 0.00000000 Orean= IOCTL . 0x00001800

1 0.01104805 [1464]

2 0.01104805 [1464]

3 0.01104805 [1464]

4 0.01104805 [1464]

5 0.01104805 [1464] —— Themida Professional -
3 0.01104805 [1464] —— {12005 Orean= Technologies -
7 0.01104805 [1464]

g 0.01104805 [1464]

9 0.01104805 [1464]

10 0.02061715 Oreans IOCTL . 0x00001400

24 WARK, http://www.zero-g.it/RE/exetools/Wark13.rar

http://www.zero-g.it/RE/exetools/Wark13.rar

PAGE 64 ARTEAM EZINE

And so¢ Lets break into the driver when IOCTL Ox1AQO is used, if you try to break at DeviceloControl it
simply won't work, the reason for this is again simple, if you have read my tutorial about TheMida with
oreans.sys2> you could see that TheMida rebases some dlls and makes breaking in APIs a little bit harder.
So we are going to break at ntoskrlINtDeviceloConftrolFile and see what is really going on when IOCTL
code 0xTA00 is used:

Here we go, 2nd break at lopXxxControlFile (internaly called by NtDeviceloControlFile):

0008:80578BF5 CALL _lopXxxControlFile
0008:80578BFA POP EBP

And on the stack:

0010:F2C15D08 0O0000OEC 00000000 00000000 00000000
0010:F2C15D18 0013FF2C 00001A00 00AA5172 00000010

Now you see IOCTL = 0x1AQ0 so we enter into driver:

0008:F86F72A0 PUSH EBP

0008:F86F72A1 MOV EBP,ESP

0008:F86F72A3 ADD ESP,-04

0008:F86F72A6 PUSH ESI

0008:F86F72A7 PUSH EDI

0008:F86F72A8 PUSH EBX

0008:F86F72A9 MOV EDI, [EBP+0C] <--- PIRP
0008:F86F72AC XOR EAX, EAX

And we continue our quest fill we find where it is playing with IOCTL = 0x1A00h:

0008:F86F74C0O CMP DWORD PTR [ESI1+0C],00001800
0008:F86F74C7 JZ _F86F74D3

0008:F86F74C9 CMP DWORD PTR [ESI+0C],00
0008:F86F74CD JNZ _F86FAB4E

Nope, continue:

0008:F86FAB4E CMP DWORD PTR [ESI+0C],00001801
0008:F86FAB55 JNZ _F86FAE80

Nope, continue:

0008:F86FAE80 CMP DWORD PTR [ESI+0C],00001802
0008:F86FAE87 JNZ _F86FAED1

Nope, continue:

0008:F86FAED1 CMP DWORD PTR [ESI1+0C],00001D00
0008:F86FAED8 JINZ _F86FB938

C’'mon...

0008:F86FB938 CMP DWORD PTR [ESI1+0C],00001A00
0008:F86FBI93F JINZ _F86FCO7A

0008:F86FB945 MOV ESI,[EDI+0C] <--- IRP.SystemBuffer

Oh, finaly, as you may see ESI point to irp.irp_systembuffer and then, *BOOM*:

0008:F86FBE66 CALL [ESI]

It is redirecting execution to code pointed by SystemBuffer, well look where it goes:

0008:00AD12E1 PUSH EBP
0008:00AD12E2 CALL _00AD12E7
0008:00AD12E7 POP EBP
0008:00AD12E8 SUB EBP,06823EE8
0008:00AD12EE JMP _00AD1304

25 Deroko, TheMida Defeating Ring0, http://tutorials.accessroot.com

http://tutorials.accessroot.com/

ARTEAM EZINE PAGE 65

0008:00AD12F3 MOV EDI1,37CE5484
0008:00AD12F8 JGE _00AD1309
0008:00AD12FA INC EBX

Ohoho, 0x1AQ0 is only gateway for ring3 code to become ring0 code © Luckily this is used only 2 times in
TheMida so lets trace this code because it seems like this is going to perform some debugger checks
(what else would be the reason for new TheMida to use Ring0). After a little bit of fracing we find very
interesting stuff here:

0008:00AD150E CMP BYTE PTR [ECX].,68
0008:00AD1511 JNZ _00AD162D

Well ECX is pointing to address of INT 41h and then TheMida checks for push instruction. When SoftICE is
not loaded int 41h will point to HalpDispatchinterrupt, but when SoftICE is loaded we will have this hook

code:

0008:F3645662 PUSH _HalpDispatchlnterrupt
0008:F3645667 JMP _F358BACB

0008:F364566C SUB EAX,8003F400
0008:F3645671 PUSH F4868B5C

0008:F3645676 JMP _F35FE601

And HalpDispatchinterupt looks like:

hallHalpDispatchlnterrupt:

806e79cc 54 push esp

806e79cd 55 push ebp

806e79ce 53 push ebx

806e79cT 56 push esi

806e79d0 57 push edi

806e79d1 83ec54 sub esp,0x54
806e79d4 8bec mov ebp,esp
806e79d6 89442444 mov [esp+0x44] ,eax

TheMida is scanning for SoftiCE hook in INT 41h if there is push (68h) debugger detected, otherwise,
everything is just fine. So let's go and write simple hook to make our SoftICE invisible for this scan, shall
we?

Use ExAllocatePool and allocate small piece of memory because we only need 7 bytes to make our
patch (or we can find some unused place in ntoskrnl.exe and assemble our patch there), here is patch
anyway:

sidt 41
0041 IntG32 0008:81C1E040 DPL=0 P

tu 81cle040

0008:81C1E040 NOP
0008:81C1E041 PUSH F3645662
0008:81C1E046 RET
0008:81C1E047 ADD [EAX] ,AL

tu 3645662
0008:F3645662 PUSH _HalpDispatchlnterrupt
0008:F3645667 JMP _F358BACB

Run TheMida protected application (the one with oreans32.sys) and it will start w/o a problem.

3. Final Remarks

If you don't want to write your own hooking “engine”, you can use the loader supplied with this
document, but IMHO, people that are using SoftICE already know driver programming so... | feel lame
for providing a loader with this document..

Well | wish to thank to ARTeam, ma mates ©, Snow Panther for cool DS 3.2 patches, 29a for the best
eZine (apart from this one!) and, of course, you for reading this small contribution.

PAGE 66 ARTEAM EZINE

Note that into the supplements folder relative to this paper you can also find a plugin for xADT which
implements this anti-debugger trick (int_hooks.dll), follow xADT distribution documentation to install it..

12. WTM Register Maker v2.0 case study, tHE mUTABLE
1. Abstract

In this journey we are going to analyze WTM Register Maker v2.0: http://www.webtoolmaster.com, which
manages your serials for your shareware, protects your exe files against cracking with crypto technology.
And had a lot of nice features like: serial is needed for extract protected exe file, small loader, fast, there
is no way to sniffing right serial / only brutal force, protect your software against cracking/hacking.

So, the objective of this work is frying to demystify and annihilate how WTM Register Maker works. To do
this, we will step through many levels of protection elimination starting with unpacking, cracking, inline
patching, aesthetical modifications, where another tools like Hzorlnline and aPE failed to accomplish
their task (in their automated configurations).

In this work | managed to think of the most optimized solution (nothing new) especially when it comes to
inline patching (you'll see later why) to defeat the nag screen from the loaders. Having said that,
another approach will be explained also just for completeness by trying to explain its advantages and
disadvantages. Why this and why not that.

The methods used to perform this task, that is, analytical, numerical, and experimental.

2. The Anatomy of Destruction

How WTM Register maker works, it does depends on the loader static linking! No metamorphism at all
(the same implementation for every time) only the General program serial key differs. Browse the folder
where you installed it and you will notice that there are two files (load.dat and load2.dat) which
responsible for adding the layer of protection to the protected file (the only limitation in this shareware
version is the nag screen added to the loaders, when it's defeated the program is full). These two files are
real executable so don't got confused with .dat extension, try to rename it to load.exe and load2.exe
and they'll run normally as any other executable file, and by the way they are both packed with
PECompact too.

2.1. Why and When load.dat or load2.dat

If you noticed both are the same sizes (92.0 KB), but if you do a hex comparison using WinHex v13.0 SR-12
a total of 9,049 differences found (of course after unpacking). So, definitely they are not the same.

You can check this by yourself following renaming trial method inside Olly through a process of
protecting a demo program. The conclusion:

Under the File tab there is a check box option [Encrypt only the first 100kb of your protected file], the
activity of this option and the size of the file to be protected determine whether to link load.dat or
load2.dat.

= |f this option is Checked and the file to be protected is less than 100kl RTool Engine will sfick to
load2.dat for registration scheme loader, otherwise (Unchecked) load.dat will be used.

= If this option is Unchecked and the file o be protected is greater than 100kb RTool Engine will stick fo
load.dat loader, otherwise (Checked) load2.dat will be used. Check Image 12.1.

= For further investigation check this area (Delphi compiler. Map file applied from DeDe)

004C47F6 |> \8D55 EO LEA EDX, [LOCAL.8]
004C47F9 |. 33CO XOR EAX,EAX
004C47FB >]. E8 DOEOF3FF CALL RToolD.004028D0
; system._ParamStr(Integer):String
004C4800 |. 8B45 EO EAX, [LOCAL.8]

004C4803 |. 8D55 E4 LEA EDX, [LOCAL.7]

http://www.webtoolmaster.com/

IN

004C4806

004C480B
004C480E
004C4813
004C4818
004C481B

004C4820
004C4822
004C4824
004C4829

004C482E
004C4833
004C4836
004C483C

004C4841
004C4844

004C4849
004C484B
004C484E
004C4854

004C4859
004C485C
004C4861
004C4866

004C4869
004C486A
004C486D

004C4A6E
004C4A70
004C4A71
004C4A72
004C4A73
004C4A76
004C4A7B
004C4ATE
004C4A83
004C4A88
004C4A8B
004C4A90
004C4A95

>].

\%

E8 413FF4FF

8D45 E4
BA 344B4C00
E8 44F5F3FF
8B45 E4
E8 843EFAFF

84C0
75 OF
B8 484B4C00
E8 76F1F9FF

E9 3B020000
8D55 DC

8B83 38030000

E8 0720FDFF
8B45 DC
E8 CF3CF4FF

8BFO
8D55 D8

8B83 44030000

E8 EF1FFDFF

8D45 D8
BA 644B4C00
E8 F6F4F3FF
8B45 D8

50
8D55 D4

8B83 44030000

64:8910

68 9D4A4C00
8D45 94

BA OEO00000
E8 70FOF3FF
8D45 D4

BA 0B0O0O0O00O
E8 63FOF3FF
C3

i

PAGE 67

CALL RToolD.0040874C
; sysutils._ExtractFilePath(AnsiString):AnsiString
LEA EAX, [LOCAL.7]
EDX,RToolD.004C4B34
CALL RToolD.00403D5C
EAX, [LOCAL.7]
CALL RToolD.004086A4
; sysutils_FileExists(AnsiString):Boolean
TEST AL,AL
JNZ SHORT RToolD.004C4833
EAX,RToolD.004C4B48
CALL RToolD.004639A4
; dialogs.ShowMessage(AnsiString)
JMP RToolD.004C4A6E
LEA EDX,[LOCAL.9]
EAX,DWORD PTR DS:[EBX+338]
CALL RToolD.00496848

; ASCII "load.dat"
; system.@LStrCat

ASCIl "Loader not found."

; mask.TCustomMaskEdit.GetText(TCustomMaskEdit) :AnsiString

EAX, [LOCAL.9]
CALL RToolD.00408518
; sysutils.StrTolnt(AnsiString): Integer;
; Hex the General Serial Number
ESI,EAX
LEA EDX, [LOCAL.10]
EAX,DWORD PTR DS:[EBX+344]
CALL RToolD.00496848

; mask.TCustomMaskEdit.GetText(TCustomMaskEdit) :AnsiString

LEA EAX,[LOCAL.10]
EDX,RToolD.004C4B64 ; ASCII "_.ver"”
CALL RToolD.00403D5C ; system.@LStrCat;
EAX, [LOCAL.10] ; -ver version of the
; original file
PUSH EAX .ver created
LEA EDX, [LOCAL.11]

EAX,DWORD PTR DS:[EBX+344]

XOR EAX,EAX

POP EDX

POP ECX

POP ECX
DWORD PTR FS:[EAX],EDX

PUSH RToolD.004C4A9D

LEA EAX,[LOCAL.27]
EDX,OE

CALL RToolD.00403AF8

LEA EAX,[LOCAL.11]
EDX,0B

CALL RToolD.00403AF8

; system.@LStrArrayClr

; system._@LStrArrayClr

Note: I'll assign Checked and Unchecked as a representation for whether this option: “Encrypt only the
first 100 kb of your protected file” is active or not. And PF (Protected File).

W-

ARTEAM EZINE

Checked

{ Start }

Unchecked <100 kb

v
Load.dat + File =

Encrypted D } >100kb
v M
Load2.dat + File= | :
Encrypted P :
[}
[}
» Finished
\
Image 12.1 - load.dat and load2.dat mechanism
3. Unpacking

Load it (RTool.exe) in RDG Packer Detector v0.6.4 BETA and voila PECompact v2.5x - v2.7x. In fact
nothing new in this case study than adopting the ESP method for unpacking.

3.1. Unpacking.ESP Method

Our next step is to load it in Olly and then pressing F8 (Step Over) twice so that the ESP stack pointer is
changed to (ESP 0012FFC4). In the Register Window: Right-click on the ESP register — Follow in Dump.
(ESP register contains the address to the top of the stack).

In the Dump Window: Highlight the first four bytes (C8 32 4F 00) and Right-click — Breakpoint —

Hardware, on access — Dword. Now OllyDbg will stop when the first four bytes are accessed.

Now Press F? (Run) Four times wait for the program to be unpacked and we will be break at a JMP. The
code looks like the following:

004F338A
004F338C
004F338D
004F338E
004F338F
004F3391
004F3394
004F3396

SEE ; RTool .004C5D94

; kernel32.77E814C7

Now press Step info F7 (Enter the JMP EAX address 004F338A). This will bring us to the OEP
(RTool .004C5D94). The code looks like the following:

004C5D94
004C5D95
004C5D97
004C5D9A
004C5D9F
004C5DA4

55

8BEC

83C4 F4

B8 AC5B4C00
E8 COO7F4FF
Al 907E4CO00

PUSH EBP

MOV EBP,ESP

ADD ESP,-0C

MOV EAX,RTool .004C5BAC

CALL RTool.00406564

MOV EAX,DWORD PTR DS:[4C7E90]

ARTEAM EZINE PAGE 69

004C5DA9 8B00 MOV EAX,DWORD PTR DS:[EAX]

004C5DAB E8 7C40F8FF CALL RTool .00449E2C

004C5DBO 8BOD 947F4C00 MOV ECX,DWORD PTR DS:[4C7F94] ; RTool _.004CA9FC
004C5DB6 Al 907E4C00 MOV EAX,DWORD PTR DS:[4C7E90]

004C5DBB 8B00 MOV EAX,DWORD PTR DS:[EAX]

004C5DBD 8B15 E43A4C00 MOV EDX,DWORD PTR DS:[4C3AE4] ; RTool .004C3B30
004C5DC3 E8 7CA40F8FF CALL RTool .00449E44

004C5DC8 Al 907E4C00 MOV EAX,DWORD PTR DS:[4C7E90]

004C5DCD 8B00 MOV EAX,DWORD PTR DS:[EAX]

004C5DCF E8 FO40F8FF CALL RTool .00449EC4

004C5DD4 E8 C3DBF3FF CALL RTool.0040399C

004C5DD9 8D40 00 LEA EAX,DWORD PTR DS:[EAX]

Now dump it using OllyDump Plug-in with Rebuild Import check box checked.
Fine, our program is out of prison now.
And do the same steps as above for load.dat and load2.dat

Note: Don’t worry for the extension .dat these are real executable files.

4. Cracking (RTool.exe + load.dat + load2.dat) = Full (OxT)

There are many methods to defeat Shareware text string from RTool.exe, Nag screen from load.dat &
load2.dat.. But in our case we'll adopt the minimum modification so that the inline patching technique
will just work fine. You may ask why not just apply the patches on the unpacked loaders and the nag
screen is gone, No the protection loader won't work with the unpacked one even if you enter the
correct seriall and serial2. (try it and you'll see what | mean).

4.1. Aesthetical modification

The first target is RTool.exe caption “Shareware” and the About tab Shareware...

WTM Register Maker V2.0 Shareware ---p| This word needs to be removed.

Image 12.2 - RTool caption

WTM Register Maker | is shareware. Please register: www.webtoolmaster.com

\
\
\

N\
\4| This string needs to be removed.

Image 12. 3 - RTool About tab string

You wonder why all of this, it's only a string | can search for it using any hex-editor and then delete it. But
if you want to apply the patches using inline patching it won't work because there are only a few bytes
available to be used in the inline patching method. And that's why we seek the minor modification to
get our patched version works perfectly without adding any section to the executable file.

Inside Olly Search for all referenced text string then right click — Search for text — and write “Shareware”
in the text box with Entire scope option checked and press ok. That's it our first hit — double click and

you are in:

004DFC3B . 43 61 70 74 69 6F 6E ASCIIl "Caption™ : Crystal Clear
004DFC42 06 DB 06

004DFC43 .21 DB 21 ; CHAR "I*

004DFC44 . 57 54 4D 20 52 65 67 69>ASCII "WTM Register Mak™
004DFC54 . 65 72 20 56 32 2E 30 20>AsSCIl "er V2.0 Sharewar™

004DFC64 . 65 ASCI1 "e™

PAGE 70 ARTEAM EZINE
Tl

By changing only one byte “Shareware” word will be gone and our mission is accomplished. So, right
click on the 004DFC54 . 65 72 20 56 32 2E 30 20>ASCIl "er V2.0 Sharewar" — Follow
in Dump.

004DFC54 65 72 20 56 32 2E 30 20 53 68 61 72 65 77 61 72 er V2.0 Sharewar
004DFC64 65 0C 43 6C 69 65 6E 74 48 65 69 67 68 74 03 5A e.ClientHeight Z

The first letter of the "Shareware” word starts at address 004DFC5C. Click on 53 (in dump window) and
press CTRL+E to edit data at this address and write 00. Now save the executable and yes the
“Shareware” is completely removed by changing only one byte.

And now apply the same approach for the Image 12.3.

004E24E9 . 47 57 54 4D 20 52 ASCII1 "GWTM R™

004E24EF . 65 67 69 73 74 65 72 20>ASCII "egister Maker is"
004E24FF . 20 73 68 61 72 65 77 61>ASCII " shareware. Plea™
004E250F . 73 65 20 72 65 67 69 73>ASCII '"se register: www"
004E251F . 2E 77 65 62 74 6F 6F 6C>ASCII "_webtoolmaster.c"
004E252F . 6F 6D 00 ASCII "om™,0

004E24DF 6C 07 43 61 70 74 69 6F 6E 06 47 57 54 4D 20 52 1 Caption GWTM R
O04E24EF 65 67 69 73 74 65 72 20 4D 61 6B 65 72 20 69 73 egister Maker is
004E24FF 20 73 68 61 72 65 77 61 72 65 2E 20 50 6C 65 61 shareware. Plea
O04E250F 73 65 20 72 65 67 69 73 74 65 72 3A 20 77 77 77 se register: www
004E251F 2E 77 65 62 74 6F 6F 6C 6D 61 73 74 65 72 2E 63 _.webtoolmaster.c
004E252F 6F 6D 00 00 OF 54 62 73 53 6B 69 6E 53 74 64 4C om.. TbsSkinStdL

The first letter of the "is shareware. Please register: www.webtoolmaster.com” siring starts at
address 004E24FD. Click on 69 (in dump window) and press CTRL+E fo edit data at this address and
write 00. Now save the executable and yes the "is shareware. Please register:
www .webtoolmaster.com” is completely removed by changing only one byte.

4.2. Nag screen load.dat

Change the extension to exe and this loader works fine but a nag screen always appear fo register as in
the following figure.

Shareware

Please register WTM Register Maker: www.webtoolmaster.com

Image 12.4 - load(2).dat nag screen

It's an easy task to remove this nag screen load the unpacked version in OllyDbg and do a search for all
referenced text string or set a BP on MessageBoxA APl. And we land here:

0042F19E |. 6A 00 PUSH 0 ;7 = MB_OK|MB_APPLMODAL
0042F1A0 |. 68 5CF24200 PUSH load.0042F25C ; = "Shareware"
0042F1A5 |. 68 68F24200 PUSH load.0042F268 | = "Please register WTM
Register Maker: www.webtoolmaster.com"

0042F1AA |. 6A 00 PUSH 0 | = NULL

0042F1AC |. E8 8767FDFF CALL <JMP.&user32.MessageBoxA> ;

There is no conditional jump fo bypass this nag screen, another approach would be to nop the call to
the message box and the nag screen no longer appear at the start. (Remember what | mentioned
before you cannot use the unpacked loaders to protect any software, it won’t work anymore so you
have to restrict your modification to minimum. Taking into consideration the available bytes for inline
patching later on).

Having said that nopping the call to the message box won't serve our task. So, another approach is to
change HWND hWnd, // handle of owner window value (Identifies the owner window of the message
box to be created. If this parameter is NULL, the message box has no owner window.).

ARTEAM EZINE PAGE 71

In this case hOwner parameter is NULL, the trick is to change its value to nonzero and the nag screen is
defeated, because in this case the message box has an owner which does not exist). | used OxFF:

0042F1AA |. 6A [ia PUsH B = | - FFFFFFF

4.3. Nag screen load2.dat

Apply same technique as before.

0042F1B6 |. 6A 00 PUSH 0 ;7 = MB_OK|MB_APPLMODAL
0042F1B8 |. 68 5CF24200 PUSH load2.0042F274 ; | = "Shareware"
0042F1BD |. 68 68F24200 PUSH load2.0042F280 ; | = "Please register WTM
Register Maker: www.webtoolmaster.com™

0042F1C2 |. 6A 00 PUSH 0O | = NULL

0042F1C4 |. E8 8767FDFF CALL <JMP.&user32.MessageBoxA> ;
After Modification:

0042F1C2 |. 6A [F& PUSH EA | ElFFFFFFFF]

5. INILINE Patching

5.1. RTool.exe Case

Load the original (Packed) RTool.exe in Olly and follow the same step as explained in the Unpacking
section fill here (but don't step info this jmp):

004F338A - FFEO [JMP EAX ; RTool .004C5D94:
004F338C 94 XCHG EAX,ESP

004F338D 5D POP EBP

004F338E 4C DEC ESP

004F338F 00C0 ADD AL,AL

004F3391 334F 00 XOR ECX,DWORD PTR DS:[EDI]
004F3394 D033 SAL BYTE PTR DS:[EBX],1
004F3396 4F DEC EDI

004F3397 00A8 334F00AC ADD BYTE PTR DS:[EAX+AC004F33],CH
004F339D 334F 00 XOR ECX,DWORD PTR DS:[EDI]
004F33A0 0000 ADD BYTE PTR DS:[EAX],AL
004F33A2 0000 ADD BYTE PTR DS:[EAX],AL
004F33A4 0000 ADD BYTE PTR DS:[EAX],AL
004F33A6 0000 ADD BYTE PTR DS:[EAX],AL
004F33A8 0000 ADD BYTE PTR DS:[EAX],AL
004F33AA 0000 ADD BYTE PTR DS:[EAX],AL
004F33AC 0000 ADD BYTE PTR DS:[EAX],AL
004F33AE 0000 ADD BYTE PTR DS:[EAX],AL
004F33B0 0000 ADD BYTE PTR DS:[EAX],AL
004F33B2 0000 ADD BYTE PTR DS:[EAX],AL
004F33B4 0000 ADD BYTE PTR DS:[EAX],AL
004F33B6 0000 ADD BYTE PTR DS:[EAX],AL
004F33B8 0000 ADD BYTE PTR DS:[EAX],AL
004F33BA 0000 ADD BYTE PTR DS:[EAX],AL
004F33BC 0000 ADD BYTE PTR DS:[EAX],AL
004F33BE 0000 ADD BYTE PTR DS:[EAX],AL

We need to find a padded area of zero’s to inject our patched byte. | know there are a plenty down this
address but they are not accessible to be used in our inline patching (try and you'll got this error “Unable
to locate data in executable file”), more than that, even after this 004F338A the area that follow this
address is very critical to fit our changes (I tried before and it doesn’t work). This phenomenon refer to the
fact that the Virtual Size is larger than the Raw Size (as in figure 5) so you can’'t save your changes
because it doesn't exist in the executable it's only Virtual, you may overcome this problem by adding a
new section which is a tedious task to do for three programs, or you can make the Virtual Size equal the
Raw Size by adding the missing bytes using any hex editor.

In our case, we won't adopt any of these methods, we'll stick to the normal method with some careful
and optimization. And it's done.

PAGE 72 ARTEAM EZINE
Tl

| | | | | | |

01 | CODE | OO0FO000 | 00001000 | 0004F800 | 00000400 | E0000020 |

02 | .rsrc | 00003000 | OO0F1000 | 00002400 | 0004FCO0 | E0000020 |
Figure 5 — Virtual and Raw Size

5.1.1 Owned it

So we'll locate address 004F33AC as a starting point to inject the modified bytes; it's better to save the
registers and flags contents before you inject your own code and after that restore them so that not to
interfere with the flow of the original executable registers and flags contents.

= Redirection to our cave

Another constfraint on our patching mode is that we need to redirect the jump from OEP to our cave
using a short jump so that not to overwrite many instructions. And here it is finalized.

004F338A /EB 20 ; JMP to our cave
004F338C |94 XCHG EAX,ESP

004F338D |5D POP EBP

004F338E |4C DEC ESP

004F338F |00CO ADD AL,AL

004F3391 |334F 00 XOR ECX,DWORD PTR DS:[EDI]
004F3394 |D033 SAL BYTE PTR DS:[EBX],1

004F3396 |4F DEC EDI

004F3397 |00A8 334F00AC ADD BYTE PTR DS:[EAX+AC004F33],CH
004F339D |334F 00 XOR ECX,DWORD PTR DS:[EDI]
004F33A0 |0000 ADD BYTE PTR DS:[EAX],AL

004F33A2 |0000 ADD BYTE PTR DS:[EAX],AL

004F33A4 |0000 ADD BYTE PTR DS:[EAX],AL

004F33A6 |0000 ADD BYTE PTR DS:[EAX],AL

004F33A8 |0000 ADD BYTE PTR DS:[EAX],AL
004F33AA |0000 ADD BYTE PTR DS:[EAX],AL

004 F33ACEERNG]Y)

004F33AD C605 5CFC4D00 00
004F33B4 C605 FC244E00 00
004F33BB 61

004F33BC FFEO

; Save the contents of the registers
4DFC5C ; our modified byte
4E24FC ; our modified byte

; Restore registers contents
; JUP to OEP EAX = 004C5D94

If you have enough space (another program scenario) had better to do it like this:

XXXXXXXX \00 [PUSHAD] ; Save the contents of the registers by
pushing them on the stack (32 bit)

XXXXXXXX \0O PUSHFD] ; Save the contents of the EFLAGS by
pushing them onto the stack (32 bit)

XXXXXXXX 0000 00000000 00 X XXXXXXXX ; our modified byte

XXXXXXXX 0000 00000000 00 X XXXXXXXX ; our modified byte

XXXXXXXX 00 POPFD) ; Restore EFLAGS contents by popping the
top of the stack into 32-bit EFLAGS
register

XXXXXXXX 00 POPAD) ; Restore registers contents by popping
the top of the stack into 32-bit
registers

XXXXXXXX 0000 ; JMP to OEP XXXXXXXX

5.2. load.dat Case

0043F9D2 . /EB 13

0043F9D4 | F8F34200 DD load.0042F3F8 ; ASCII "U<ifAd, 6B"
0043F9D8 | 08FA4300 DD load.0043FA08

0043F9DC | 10FA4300 DD load.0043FA10

0043F9E0 | FOF94300 DD load.0043F9F0

0043F9E4 IFa DB F4

0043F9ES5 - |F9 STC

ARTEAM EZINE J PAGE 73
ad

0043F9E6 - 143 INC EBX
(0043F9E7 > \C605 ABF14200 FF
0043F9EE . FFEO

42F1AB],0
; JUP to OEP EAX = 0042F3F8

Note: OFF *“0” must be written before values that begins with a letter.

5.3. load2.dat Case

0043F9D2 . /EB 13
0043F9D4 . |10F4 ADC AH,DH

0043F9D6 . |42 INC EDX

0043F9D7 . |0008 ADD BYTE PTR DS:[EAX],CL
0043F9D9 . |FA cL1

0043F9DA . |43 INC EBX

0043F9DB .]0010 ADD BYTE PTR DS:[EAX],DL
0043F9DD . |FA cL1

0043F9DE . |43 INC EBX

0043F9DF .]OOFO ADD AL,DH

0043F9E1 . |F9 STC

0043F9E2 . |43 INC EBX

0043F9E3 . |OOF4 ADD AH,DH

0043F9E5 . |F9 STC

0043F9E6 . |43 INC EBX

> \C605 C3F14200 FF BYTE 42F1C3],0
0043F9EE . FFEO IMP ; JMP to OEP EAX = 0042F410

6. Final Remarks

The most important thing to look at in this paper is know how to find your path around the axe of interest
so that to understand the interrelations between each object and to defeat the obstacles fill you got
satisfied.

Finding multi-solution with a degree of optimization for the same problem gives you a better solid
understanding in code infrastructure analysis.

Always fry to give yourself a space and time when you start doing something new for the first time like
I've done in this short journey.

7. References

[1] “RCE Emphasizing on Breaking Software Protection”, tHE mUTABLE , http://tutorials.accessroot.com
[2] "Working with IMPORT TABLES part 3", Ricardo Narvaja, English version, Translated by Innocent

http://tutorials.accessroot.com/

PAGE 74 ARTEAM EZINE

13. ARTeam eZine #3 Call for Papers

ARTeam members are asking for your article submissions on subjects related to Reverse-Engineering.

We wanted to provide the community with somewhere to distribute interesting, sometimes random,
reversing information. Not everyone likes to write tutorials, and not everyone feels that the information
they have is enough fo constitute a publication of any sort. I'm sure all of us have hit upon something
interesting while coding/reversing and have wanted to share it but didn’'t know exactly how. Or if you
have cracked some inferesting protection but didn't feel like writing a whole step by step tutorial, you
can share the basic steps and theory here. If you have an idea for an article, or just something
fascinating you want to share, let us know.

Examples of articles are a new way to detect a debugger, or a new way to defeat debugger detection,
or how to defeat an interesting crackme.

The eZine is more about sharing knowledge, as opposed to teaching. So the articles can be more
generic in nature. You don't have to walk a user through step by step. Instead you can share information
from simple theory all the way to “sources included”

What we are looking for in an article submission:
1. Clear thought out article. We are asking you to take pride in what you submit.
2. It doesn't have to be very long. A few paragraphs is fine, but it needs to make sense.
3. Any format is fine, but to save our time possibly send them in WinWord Office or text format.
4. If you include pictures please center them in the article. If possible please add a number and
label below each image.
If you use references please add them as footnotes where used.
6. If you include code snippets inside a document other than .txt please use a monospace font to
allow for better formatting and possibly use a syntax colorizer
7. Anonymous articles are fine. But you must have written it. No plagiarism!
8. Any other questions you may have feel free to ask

o

We are accepting articles from anyone wanting to contribute. That means you.

We want to make the eZine more of a community project than a team release. If your arficle is not used,
it's not because we don't like it. It may just need some work. We will work with you to help develop your
article if it needs it.

Questions or Comments please visit http://forum.accessroot.com

http://forum.accessroot.com/

	1. The Cone of Experience, Shub-Nigurrath of ARTeam
	Verification
	1. Adding New Functionality to Old Software, Gabri3l of ARTeam
	2. Patching by using resource, ThunderPwr of ARTeam
	3. Patching Event Driven Nags, Shub-Nigurrath of ARTeam
	4. Writing OllyDbg Scripts, Buzifer of Team RESURRECTiON
	5. Utilizing Code Injection on an ACprotected application, condzero of ARTeam
	6. Code Obfuscation, zyzygy
	7. Testing for OllyDbg Using NtYieldExecution, Gabri3l of ARTeam
	8. Coding a Serial Sniffer (Oraculum), anorganix of ARTeam
	9. Ring 3 debugger detection via INVALID_HANDLE exception, deroko of ARTeam
	10. PEB Dll Hooking, a novel method to hook dlls, deroko of ARTeam
	11. TheMida: no more Ring0?, deroko of ARTeam
	12. WTM Register Maker v2.0 case study, tHE mUTABLE
	13. ARTeam eZine #3 Call for Papers

